Закона Ома для участка цепи

Содержание

Баланс мощностей в цепи постоянного тока.

Собственно, это просто проверка правильности расчетов электрической цепи. Возвращаясь к нашему абстрактному примеру это выглядит так: вы купили товары, забрали их на кассе, отошли от кассы и вам показалось, что ваши пакеты должны быть больше или меньше, чем получились. Тогда вы берёте чек и начинаете сравнивать товар в чеке и товар в наличии. Если товары в чеке и товары в руках совпали, значит всё в порядке. Если мы обратимся к определению, то баланс мощностей – сумма мощностей потребляемых приемниками, равна сумме мощностей отдаваемых источниками.

Как это использовать на практике? Допустим, у нас есть задача, которую нужно решить:moshhnost-v-cepi-postoyannogo-toka5

Поскольку решение задачи не является целью этой статьи, я дам уже готовые ответы. moshhnost-v-cepi-postoyannogo-toka6

Теперь надо проверить правильно ли были посчитаны токи в задаче. Ток в цепи равен току , следовательно, мощность источника питания (Е1хI1) должна быть равна сумме мощностей сопротивленийmoshhnost-v-cepi-postoyannogo-toka7

Что мы и получаем с учетом потерь при округлениях.

Таким образом, баланс мощностей в электрической цепи постоянного тока — это ничто иное, как проверка самого себя, своих расчётов.

Как видите, мощность в цепи постоянного тока посчитать довольно легко. Гораздо больше сложностей возникнет, если ток будет переменный.  Другими словами, на примере магазина это выглядит так:

Постоянный ток – от входа до выхода прямая линия и вы спокойно идете от начала и до конца без каких-либо приключений.

Переменный ток – магазин представляет из себя зигзаг и вам приходится делать лишние движения.

Поэтому в переменном токе мощность считать немного сложнее, но это уже тема совсем другой статьи.

Что такое мощность в электричестве: просто о сложном

Вспомнилась былина об Илье Муромце, когда он приложил всю свою мощь к соловью разбойнику. У бедолаги сразу посыпались искры из глаз, как пламя с верхней картинки на проводке с неправильным монтажом.

Простыми словами: мощность в электричестве — это силовая характеристика энергии, которой оценивают, как способности генераторных установок ее вырабатывать, так возможности потребителей и транспортных магистралей.

Все эти участки должны быть точно смонтированы и налажены для обеспечения безопасной работы. Как только в любом месте возникает неисправность, так сразу развивается авария во всей схеме.

Если говорить о домашнем электрическом оборудовании, то приходится постоянно соблюдать баланс между:

  1. включенными в сеть приборами;
  2. конструкцией проводов и кабелей;
  3. настройкой защитных устройств.

Только комплексное решение этих трех вопросов может обеспечить безопасность проводки и жильцов.

Как рассчитать электрическую мощность в быту

Формулы расчета мощности в электричестве позволяют выполнить качественную оценку безопасности каждого из перечисленных выше пунктов.

Пользоваться ими не сложно. Я уже приводил в предыдущих статьях шпаргалку электрика, где они помещены в наглядной форме для цепей постоянного тока.

Шпаргалка электрика

Они полностью справедливы для активной составляющей мощности переменного тока, совершающей полезную работу. Кстати, кроме нее есть еще и бесполезная — реактивная, связанная с потерями энергии. Ее описанию посвящен второй раздел.

Такие вычисления удобно делать с помощью онлайн калькулятора. Он избавляет от рутинных математических вычислений и арифметических ошибок.

При любом из способов для расчета активной мощности требуется знать две из трех электрических величин:

  1. силу тока I;
  2. приложенное напряжение U;
  3. сопротивление участка цепи R.

Как измерить электрическую мощность дома

Существует еще одна возможность оценки активной мощности: ее измерение в действующей схеме специальными приборами: ваттметрами.

Точные замеры может обеспечить промышленный лабораторный ваттметер. Он изготавливается как прибор, работающий на аналоговых сигналах,так и с помощью цифровых технологий.

Лабораторный ваттметр

В бытовой проводке точные вычисления не нужны. Для нее выпускаются различные виды более простых ваттметров.

Популярностью пользуются приборы, которые можно вставить в розетку и подключить к ним шнур питания от потребителя, включить их в работу и сразу снять показания на дисплее в ваттах.

Ваттметр розетка

Их так и называют: ваттметр розетка. Они измеряют чисто активную мощность переменного тока.

Такие приборы избавляют электрика от выполнения сложных операций под напряжением, когда требуется замерять:

  • действующее напряжение;
  • силу тока;
  • угол сдвига фаз между векторами тока и напряжения.

Потом все данные дополнительно требуется вводить в формулу расчета мощности по току и напряжению, делать по ней вычисления.

Этот метод можно упростить, если внимательно наблюдать за показаниями электрического счетчика индукционной системы с вращающимся диском. Он считает совершенную работу: потребленную мощность за определенную время.

Однако скорость вращения диска как раз и характеризует величину потребления. Надо просто посчитать сколько раз он обернется за минуту и перевести в ватты по табличке, расположенной на корпусе.

Индукционный счетчик

Определение

Мощность – это скалярная величина. В общем случае она равна отношению выполненной работы ко времени:

P=dA/dt

Простыми словами эта величина определяет, как быстро выполняется работа. Она может обозначаться не только буквой P, но и W или N, измеряется в Ваттах или киловаттах, что сокращенно пишется как Вт и кВт соответственно.

Электрическая мощность равна произведению тока на напряжение или:

P=UI

Как это связано с работой? U – это отношение работы по переносу единичного заряда, а I определяет, какой заряд прошёл через провод за единицу времени. В результате преобразований и получилась такая формула, с помощью которой можно найти мощность, зная силу тока и напряжение.

Работа и мощность постоянного тока.

Давайте вспомним первую статью курса “Основы электроники” – вот она. Там мы определили напряжение как работу, которую необходимо затратить для переноса единичного заряда из одной точки в другую. Обозначим эту величину – A. Чтобы найти работу, которую совершат несколько зарядов, нам необходимо работу одного заряда умножить на количество зарядов:

A_0 = AN

По определению мощность – это работа за единицу времени. Таким образом, мы получаем формулу мощности:

P = \frac{A_0}{\Delta t} = \frac{N}{\Delta t}A

Снова возвращаемся мысленно к уже упомянутой первой статье курса, в которой мы обсуждали понятия тока и напряжения и вспоминаем, что количество зарядов, проходящее через проводник в единицу времени (\frac{N}{\Delta t}) – это и есть ток по определению. И в итоге мы приходим к следующему выражению для мощности электрического тока:

P = IU

Здесь мы также учли, что работа A – численно равна напряжению на данном участке цепи.Собственно, мы получили одну из основных формул для нахождения мощности постоянного тока. А учитывая закон Ома получаем следующее:

P = IU = I(IR) = I^2R

P = IU = \frac{U}{R}\medspace U = \frac{U^2}{R}

Единицей измерения мощности является Ватт, а 1 Вт – мощность, при которой за 1 секунду совершается работа 1 Джоуль.

Тут необходимо остановиться на одном довольно интересном нюансе. Часто при обсуждении работы электрического тока можно услышать сочетание – киловатт-час. Например, электросчетчики в домах показывают работу именно в этих единицах измерения. Так вот несмотря на схожесть в названиях единиц измерения мощности (ватт) и работы (киловатт – час / ватт – час) не стоит забывать, что эти термины относятся к разным физическим величинам. Чтобы перевести КВт*ч в более привычные с точки зрения системы измерений Си Джоули можно воспользоваться следующим математическим соотношением:

1\medspace КВт\cdotч = 3600000\medspace Дж

Давайте рассмотрим небольшой пример для иллюстрации вышесказанного 🙂 Итак, пусть у нас есть чайник, мощность которого составляет 1200 Вт (1.2 КВт). Мысленно включим его на 10 минут (1/6 часа). В итоге, работа электрического тока (а вместе с ней и потребленная чайником энергия) составит:

1200\medspace Вт \cdot 1 / 6\medspace ч = 200\medspace Вт\cdot ч = 0.2\medspace КВт\cdotч

С работой и мощностью постоянного тока все понятно, давайте перейдем к цепям переменного тока.

Почему реактивное сопротивление схемы влияет на мощность переменного тока

Синусоидальная гармоника напряжения, поступая на резистивное сопротивление, изменяет величину тока без его отклонения на комплексной плоскости.

Активное сопротивление переменному току

Такой ток совершает полезную работу с минимальными потерями энергии, вырабатывая активную мощность. Частота колебания сигнала не оказывает на нее никакого влияния.

Сопротивление конденсатора и индуктивности зависит от частоты гармоники. Его противодействие отклоняет направление тока на каждом из этих элементов в разные стороны.

Конденсатор на переменном токе
Цепь с индуктивностью

Такие процессы связаны с потерей части энергии на бесполезные преобразования. На них расходуется мощность Q, которую называют реактивной.Ее влияние на полную мощность S и связь с активной P удобно представлять графически прямоугольным треугольником.

Треугольник мощностей

Захотелось его нарисовать на фоне оборудования из нагромождений фарфора и металла, где пришлось поработать довольно долго.Отвлекся. Не судите за это строго.

Сравните его с опубликованным мною ранее треугольником сопротивлений. Находите общие черты?

Треугольник сопротивлений

Ими являются геометрические пропорции фигуры, описывающие их формулы и угол φ, определяющий потери полной мощности. Перехожу к их более подробному рассмотрению.

От чего зависит мощность тока

Мощность тока, различных приборов и оборудования зависит сразу от двух основных величин – силы тока и напряжения. Чем выше ток, тем больше значение мощности, соответственно, при повышении напряжения, мощность также возрастает. Если напряжение и сила тока увеличиваются одновременно, то мощность электрического тока будет возрастать как произведение той и другой величины: N = I x U.

Мощность электрического тока

Очень часто возникает вопрос, в чем измеряется мощность тока? Основной единицей измерения этой величины является 1 ватт (Вт). Таким образом, 1 ватт является мощностью устройства, потребляющего ток силой в 1 ампер, при напряжении 1 вольт. Подобной мощностью обладает, например, лампочка от обычного карманного фонарика.

Расчетное значение мощности позволяет точно определить расход электрической энергии. Для этого необходимо взять произведение мощности и времени. Сама формула выглядит так: W = IUt где W является расходом электроэнергии, произведение IU – мощностью, а t – количеством отработанного времени. Например, чем больше продолжается работа электрического двигателя, тем большая работа им совершается. Соответственно возрастает и потребление электроэнергии.

Лошадиная сила

В некоторых случаях при определении мощности автомобилей пользуются устаревшей единицей измерения «лошадиная сила».

Эту единицу ввел в обращение Джеймс Уайт, в честь которого названа единица мощности 1 Ватт, в 1789 году. Его нанял один пивовар для постройки парового двигателя для насоса, способного заменить лошадь. Чтобы определить, какой необходим двигатель, взяли лошадь и запрягли её качать воду.

Считается, что пивовар взял самую сильную лошадь и заставил её работать без отдыха. Реальная сила лошади меньше в 1,5 раза.

В разных странах соотношение 1ЛС и 1кВт немного отличается друг от друга. В России принято считать 1ЛС=0.735кВт, и автомобильный двигатель в 80ЛС соответствует электродвигателю 58,8кВт.

Лошадиная сила

Лошадиная сила

Знание того, как определить мощность и как узнать ток электроприборов, необходимы для проектирования электросетей, расчета кабелей и пускорегулирующей аппаратуры.

Подбор номинала автоматического выключателя

Автоматические выключатели защищают электрические аппараты от токов короткого замыкания и перегрузок.

При аварийном режиме они обесточивают защищаемую цепь при помощи теплового или электромагнитного механизма расцепления.

Тепловой расцепитель состоит из биметаллической пластины с различными коэффициентами теплового расширения. Если номинальный ток превышен, пластина изгибается и приводит в действие механизм расцепления.

У электромагнитного расцепителя имеется соленоид с подвижным сердечником. При превышении заданного I, в катушке увеличивается электромагнитное поле, сердечник втягивается в катушку соленоида, в результате чего срабатывает механизм расцепления.

Минимальный I, при котором тепловой расцепитель должен сработать, устанавливается с помощью регулировочного винта.

Ток срабатывания у электромагнитного расцепителя при коротком замыкании равен произведению установленного срабатывания на номинальный электроток расцепителя.

Подбор автомата по мощности

Электрический ток и нагрузка

В дело идет Закон Ома. Как я уже писал, это самый значимый закон во всей электронике. Что такое по сути лампочка? Это вольфрамовый проводок в стеклянной колбе с вакуумом. Вольфрам – это металл, следовательно, он может через себя проводить электрический ток. Но весь прикол в том, что при определенном напряжении он  раскаляется и начинает светиться. То есть отдавать энергию в пространство в виде тепла и излучения.

В холодном состоянии вольфрамовая нить обладает меньшим сопротивлением, чем в раскаленном, более чем в десять раз. Следовательно, лампочка – это просто как сопротивление для электрической цепи. В этой статье я взял лампочку, чтобы визуально показать нагрузку. Нагрузка – от слова “нагружать”. Источнику питания не нравится, когда ему приходится отдавать электроэнергию. Он любит работать без нагрузки 😉

Теперь давайте представим все это с точки зрения гидравлики и механики.

Имеем трубу, по которой бурным поток течет вода. К трубе приделана вертушка, типа водяного колеса. Лопасти вертушки крутят вал.

Мощность электрического тока

Рисунок я чертил по всем догмам черчения: главный вид, и справа его разрез.

Если к валу ничего не цепляется, то поток воды бурно бежит по трубе и крутит колесо, а оно в свою очередь крутит вал. Такой режим можно назвать холостым режимом работы водяного колеса, то есть режимом без нагрузки.

Но что будет, если мы начнем использовать вращение вала себе во благо? Например, соединим с помощью муфты вал водяного колеса с валом мини-мельницы?

Мощность электрического тока

Думаю, многие из моих читателей сразу догадаются, что водяное колесо начнет притормаживать, так как мы его заставили работать. Крутиться со скоростью холостого хода у нашего вала уже не получится. Скорость будет меньше. То есть в нашем случае у нас на валу есть нагрузка. Что же будет происходить с потоком воды в трубе? Он будет тормозиться, так как лопасти вала не дадут водичке спокойно бежать по трубе. Поэтому, общий поток воды в трубе будет меньше, чем ДО холостого хода вала.

А если нагрузить вал, чтобы тот поднимал  грузовой лифт?

Мощность электрического тока

Думаю, вся конструкция тут же встанет колом. То есть большая нагрузка станет непосильна для вала. А если бы мы сделали лопасти вертушки такие, чтобы они полностью перекрывали диаметр трубы, то поток жидкости вообще бы остановился.

Давайте разберем еще один пример для понимания. Все тот же самый рисунок:

Мощность электрического тока

Предположим, что мы прицепили к валу наждак, а электродвигатель убрали с этой конструкции. И вот мы решили что-нибудь шлифануть.

Мощность электрического тока

Итак, что у нас в результате получается? Если мы будем слабо давить на шлифовальный круг, то у нас круг начнет притормаживаться и уже  будет крутиться с другой скоростью. Если мы сильнее будем давить на круг, то скорость вала еще больше упадет. Если же мощность нашего вала слабовата, мы можем добиться того, что при сильном давлении на круг вообще остановить вал. Тогда и точиться ничего не будет…

Давайте снова вернемся к мини-мельнице

Мощность электрического тока

Что будет если поток воды в трубе увеличить в несколько  раз? Мельница будет крутиться так, что ее порвет нахрен! А  если поток воды в трубе будет очень слабый? Разумеется, мельница будет молоть одно-два зернышка в час. Хотя, опять же, с большим потоком воды мы вполне можем поднять лифт.

Понимаете к чему я веду? Все завязано друг с другом! Давление в трубе, скорость потока жидкости и нагрузка… Все они связаны воедино.

Расчёт мощности по току и напряжению

Посчитать потребление P можно, зная эти два параметра I и U сети. До того, как подобрать кабели или провода для проводки в квартире, нужно определиться с P потребителей, которые можно к ним подключить. Расчёт производят после того, как измерительными приборами фиксируют действующие показания силы тока I (А), а также напряжения U (В).

Однофазная сеть напряжением 220 вольт

При включении в цепь активной нагрузки пользуются формулой: P = U*I. В случае присутствия сдвига фаз между U и I пользуются формулой: P = U*I* cosφ.

Трёхфазная сеть напряжением 380 В

В трёхфазной сети переменного тока со сдвигом фаз результат последней формулы умножают на √3. Значение угла cosφ можно уточнить в справочнике.

Таблица cosφ для бытовых устройств

Таблица cosφ для бытовых устройств

При выборе сечения проводов обычно известны суммарная мощность будущих потребителей и напряжение сети.

Нужна только сила тока формула через мощность и напряжение которой имеет вид:

I = P / (U *cosφ).

У формулы для расчёта тока, используя мощность и напряжение, следующие составляющие:

  • P – известная мощность прибора, (Вт);
  • U – напряжение питания, (220/380 В);
  • cosφ – угол сдвига фаз.

Расчет тока можно выполнить с помощью онлайн-калькулятора.

Онлайн-калькулятор – общий вид интерфейса

Онлайн-калькулятор – общий вид интерфейса

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром. Также с этой задачей легко справится цифровой ваттметр.

Что такое активная и реактивная мощность переменного электрического тока?

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Мощность при токах: постоянном и переменном

Когда возникает необходимость рассчитывать, сколько будет потреблять установленное оборудование, нужно помнить, что существует разница между значением P при подаче постоянного и переменного напряжений.

Формула P при постоянном токе показывает P в виде произведения мгновенных значений I и U. При этом момент времени может быть абсолютно любой.

Выражение P в условиях синусоидального движения электронов учитывает угол, на который сдвинуты фазы тока и напряжения. Косинус этого угла умножается на произведение тока и напряжения за период времени Т. Это период времени, за который ток меняет своё значение с положительного на отрицательное:

Т = 1/f, где f – это частота 50 Гц.

Видео о законах электротехники

Из следующего видео можно узнать, что такое электричество, мощность электрического тока. Даны примеры практического применения законов электротехники.

Калькулятор мощности для своих

Здесь вы можете выполнить вычисления онлайн без использования формул и арифметических действий. Просто введите ваши исходные данные в таблицу и жмите кнопку “Рассчитать ток”.

А в заключение напоминаю, что для ваших вопросов создан раздел комментариев. Задавайте их, я отвечу.

Преобразованные формулы Закона Ома и Джоуля-Ленца

Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой не связанные между собой четыре сектора и очень удобна для практического применения

Закон Ома и Джоуля-Ленца в таблице

По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.

Формула мощности для постоянного электрического тока

Поэтому формулы мощности в электронике имеют вот такой вид:

Мощность электрического тока

Отсюда  A=IUt

где,

А – это полезная работа, Джоули

t  – время,  секунды

U – напряжение, Вольты

I – сила тока, Амперы

P – собственно сама мощность, Ватты

R – сопротивление, Омы

Как вы можете заметить, формула P=I2 R говорит нам о том, что не всегда на маленьком сопротивлении вырабатывается большая мощность и то, что мощность очень сильно зависит от силы тока. А как поднять силу тока? Добавить напряжения ;-). Закон Ома работает всегда и везде.

А из формулы P=U2/R, можно увидеть, что чем меньше сопротивление и больше напряжение в цепи, тем больше мощность будет выделяться на нагрузке. А что такое выделение мощности на нагрузке? Это может быть тепло, свет, какая-либо механическая работа и тд. Короче говоря, выработка какой-либо полезной энергии для наших нужд.

Расчет электрических цепей

Все формулы, используемые для расчётов электроцепей, вытекают одна из другой.

Взаимосвязи электрических характеристик

Взаимосвязи электрических характеристик

Так, например, по формуле расчета мощности можно произвести расчет силы тока, если известны P и U.

Чтобы узнать, какой ток будет потреблять утюг (1100 Вт), включенный в сеть 220 В, нужно выразить силу тока из формулы мощности:

I = P/U = 1100/220 = 5 A.

Зная расчётное сопротивление спирали электроплиты, можно найти P устройства. Мощность через сопротивление узнают по формуле:

P = U2/R.

Существует несколько методов, позволяющих решать поставленные задачи по расчётам различных параметров заданной цепи.

Методы расчёта электрических цепей

Методы расчёта электрических цепей

Расчёт мощности для цепей разного рода тока помогает правильно оценить состояние линий электропитания. Бытовые и промышленные аппараты, подобранные в соответствии с заданными параметрами Pном и S, будут работать надёжно и выдерживать максимальные нагрузки годами.

Как рассчитать мощность, зная силу тока и напряжение

Силовую характеристику электроустановок рассчитывают по формуле:

P=U*I – постоянный ток;

P=U*I*cos(фи) – переменный ток однофазной сети.

P=1,73*U*I*cos(фи) — трехфазная сеть.

В статье приведены упрощенные формулы расчета активной мощности электросети, которые дают приблизительные результаты.

Для получения точных результатов, необходимо учитывать также реактивное и обычное сопротивление, а также потери.

Интересная инфа по теме

Трехфазную схему электроснабжения используют в производстве. Суммарный вольтаж такой сети равен 380 В. Также такую проводку устанавливают на многоэтажные дома, а затем раздают по квартирам. Но есть один нюанс, который влияет на конечное напряжение в сети — соединение жилы под напряжение в результате дает 220 В. Трехфазная в отличие от однофазной не дает перекосы при подключении силового оборудования, так как нагрузка распределяется в щитке. Но для подведения трехфазной сети к частному дому требуется специальное разрешение, поэтому широко распространена схема с двумя жилами, одна их которых нулевая.

Заключение

Мощность электрического тока — один из важных параметров, который обязан знать каждый человек. Такая необходимость обусловлена безопасностью электросети (лимит на одновременное подключение нескольких приборов). Во время работы оборудования происходит нагрев не только внутренней схемы, но и проводки. Зная предельные возможности сети, всегда можно избежать неприятных ситуаций, связанных с ее перегревом и возможным коротким замыканием.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...
Электрик в Дом