Принцип работы, характеристика и разновидности выпрямительных диодов

Электровакуумные диоды

Приборы этого типа выполнены в виде электронных ламп. Лампа выглядит как стеклянный баллон, внутрь которого помещены два электрода. Один из них анод, другой катод. Они находятся в вакууме. Конструктивно анод выполнен в виде тонкостенного цилиндра. Внутри расположен катод. Он имеет обычно цилиндрическую форму. Изолированная нить накала проложена внутри катода. Все элементы имеют выводы, которые соединены со штырьками (ножками) лампы. Ножки лампы выведены наружу.

Принцип работы

При прохождении электрического тока по спирали она нагревается и разогревает катод, внутри которого находится. С поверхности разогретого катода электроны, покинувшие его, без дополнительного ускоряющего поля накапливаются в непосредственной близости от него. Часть из них затем обратно возвращается на катод.

При подаче на анод положительного напряжения электроны, испускаемые катодом, устремляются к нему, создавая анодный ток электронов.

Катод обладает пределом эмиссии электронов. При достижении этого предела анодный ток стабилизируется. Если на анод подать небольшое отрицательное напряжение по отношению к катоду, то электроны прекратят своё движение.

Материал катода, из которого он изготовлен, обладает высокой степенью эмиссии.

Вольт- амперная характеристика (ВАХ)

ВАХ диодов этого типа графически показывает зависимость тока анода от прямого напряжения, приложенного к выводам катода и анода. Она состоит из трёх участков:

  • Медленное нелинейное нарастание тока;
  • Рабочая часть характеристики;
  • Область насыщения тока анода.

Нелинейный участок начинается после области отсечки анодного тока. Его нелинейность связана с небольшим положительным потенциалом катода, который покинули электроны при его разогреве нитью накала.

Активный участок определяет из себя почти вертикальную линию. Он характеризует зависимость анодного тока от возрастающего напряжения.

Участок насыщения представляет собой линию постоянного значения тока анода при увеличивающемся напряжении между электродами лампы. Электронную лампу на этом участке можно сравнить с проводником электрического тока. Эмиссия катода достигла своего наивысшего значения.

Технология изготовления и конструкция

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными. Технология изготовления таких диодов заключается в следующем. На поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором.

Для чего нужны выпрямительные диоды?

Германиевые диоды.

СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВ

Для начала давайте рассмотрим как работает диод в цепи постоянного (рис.2) и переменного (рис.3) тока, что следует учитывать при том или ином включении диодов.

Подключение диода

При подаче на диод прямого постоянного напряжения через него начинает протекать ток, определяемый сопротивлением нагрузки

. Поскольку он не должен превышать предельно допустимого значения следует определить его величину, после чего выбрать тип диода:

Iпр=Uн/Rн — все просто — это закон Ома.

Uн=U-Uоткр — см. начало статьи. Иногда величиной Uоткр можно пренебречь, бывают случаи, когда ее необходимо учитывать, например при расчете схемы подключения светодиода.

При включении диода в цепь переменного тока, помимо прочего, на нем периодически возникает обратное напряжение Uобр. Имейте в виду, следует учитывать его амплитудное значение (Для Uпр, кстати, тоже). Например, для бытовой электрической сети привычное всем напряжение 220В является действующим, а его амплитудное значение составляет 380В. Подробнее про это можно посмотреть на этой странице.

Это самое основное, про что надо помнить.

Теперь — несколько схем подключения диодов, часто встречающихся на практике.

Мостовая схема диодов

Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков, думаю из рисунка все ясно. Кстати, последний вариант — условное обозначение диодного моста в целом. Применяется для упрощения обозначения двух предыдущих схем.

Далее несколько менее очевидных схем (для постоянного тока):

Схемы включения диодов
  1. Диоды могут выступать как «развязывающие» элементы. Управляющие сигналы Упр1 и Упр2 объединяются в точке А, причем взаимное влияние их источников друг на друга отсутствует. Кстати, это простейший вариант реализации логической схемы «или».
  2. Защита от переполюсовки (жаргонное — «защита от дураков»). Если существует возможность неправильного подключения полярности напряжения питания эта схема защищает устройство от выхода из строя.
  3. Автоматический переход на питание от внешнего источника. Поскольку диод «открывается», когда напряжение на нем достигнет Uоткр, то при Uвнеш <Uвн+Uоткр питание осуществляется от внутреннего источника, иначе — подключается внешний.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Светодиоды

Светодиоды представляют собой полупроводниковые диоды, которые излучают свет при прохождении через них электрического тока. Они могут излучать разные цвета и делятся на такие типы — 3 мм, 5мм, 8мм, SMD 0603, Top type, мигающий диод, диод с резистором, Star PCB, Emitter. В сравнении с традиционными лампами светодиоды обладают многими преимуществами – это экономичность, прочность, яркость света, долговечность, низкий нагрев в процессе работы. Что касается недостатков, то главным из них является цена, так как подобные приборы стоят достаточно дорого. Рассмотрим различные виды светодиодных устройств, которые чаще всего применяются на практике.

1. Одиночные светодиоды

Подобные устройства широко используются в самой разной аппаратуре в качестве лампочек индикации, которые чаще всего свидетельствуют о том, включен или выключен прибор. Кроме того, они применяются для освещения различных небольших пространств, например в автомобилях.

2. 7’Segment

Технология Seven-Segment Display с использованием светодиодов применяется в электронных часах, в различных измерительных приборах и в других технических средствах, которые предполагают отображение цифровой информации на дисплее. В таких целях светодиоды используются еще с 1910 года, но они не потеряли своей актуальности и сейчас. 7’Segment позволяет отображать простейшие данные на дисплее самым простым способом и с низкими энергозатратами.

3. Матрица светодиодов

Светодиодная матрица представляет собой определенное количество светодиодов, которые размещаются на одной площадке. Главные характеристики таких устройств это яркость и размеры. Большое количество применяемых диодов позволяет добиться высоких показателей освещения. Устанавливаются подобные матрицы чаще всего в специальных плафонах, которые могут использоваться в различных местах, например в салоне автомобиля, в его бардачке или в багажнике.

4. LED телевизоры

LED телевизоры – это телевизоры, принцип работы которых основывается на использовании светодиодов. Они дают возможность добиться хорошего качества изображения и позволяют экономить на электроэнергии. Благодаря небольшим размерам таких диодов, телевизионные экраны имеют значительно меньшую толщину, чем у традиционных моделей. Кроме того, подобные устройства характеризуются надежностью и достаточно большим сроком службы. Все телевизоры, изготовленные по этой технологии, имеют боковую подсветку экрана и подсветку за матрицей.

Как видим, несмотря на свою простоту, диоды нашли применение в самых разнообразных технических областях, и без их использования работа многих устройств весьма проблематична. Следует заметить, что диоды находят и новые сферы применения.

Прямое включение диода

К аноду диода подают положительное напряжение, на катод – отрицательное. Что получается:

  • электроны двигаются к месту p-n границы;
  • сопротивление в месте перехода уменьшается, проводимость увеличивается;
  • как следствие возникает прямой ток.

При соблюдении полярности диод будет считаться включенным прямо.

Прямое включение диода

Прямое включение диода

Использование сборки

При эксплуатации выпрямительного полупроводникового диода польза извлекается только из половины волн переменного тока, соответственно, безвозвратно теряется более половины входного напряжения.

С целью улучшить качество преобразования переменного тока в постоянный используется сборка из четырех устройств – диодный мост. Выгодно отличается тем, что пропускает ток на протяжении каждого полупериода. Диодные мосты производят в виде комплекта, заключенного в пластиковый корпус.

Выпрямительный мост из диодовПринципиальная схема диодного мостак содержанию ↑

Принцип работы.

Кристалл состоит из полупроводниковых материалов, которые расположены слоями. Свечение появляется после протекания электричества между границами их соприкосновения. В одном полупроводнике (n) преобладают электроны (отрицательные частицы), а в другом (p) –  ионы – дырки (положительные частицы). Полупроводниковые соединения способны пропускать электричество только  от p -слоя к n -слою, т.е. в одну сторону.

Схема появления излучения.

Под воздействием электричества электроны из n-слоя и дырки из р-слоя начинают двигаться к р-n-переходу. Происходит рекомбинация дырки и электрона — между р-n-границей протекает ток. Электроны переходят на низший энергетический уровень, с высоких орбиталей на более низкие. Освобождается энергия, которая  излучается в виде фотонов.

Описанный процесс протекает во всех полупроводниковых диодах. Но длина волны фотона не всегда находится в заметном человеческому глазу спектре. Для появления видимости необходимо движение элементарных частиц в определенном интервале: от 400 до 700 нм. Это достигается подбором определенных химических веществ. У каждого есть особая длина волны и цвет излучения.

Самые удачные материалы получаются из соединений типа AIIIBV и AIIBVI где II, III, V и VI – валентности элементов. Например, уже упоминавшийся арсенид галлия, фосфат индия или селенид цинка  и теллурид кадмия. Подобные соединения называют прямозонными. Возможно получение разнообразных  по свечению светодиодов: от ультрафиолетовых до инфракрасных.

К другой группе относятся непрямозонные полупроводники. Это карбид кремния, сам кремний, германий и другие. Диоды из них свет светят очень неярко. Впрочем, научные работы по использованию таких веществ продолжаются. Основные поиски решения ведутся в области технологий квантовых точек и фотонных кристаллов.

Кроме света при p-n-переходе освобождается еще и тепло. Для его отвода необходим теплоотвод (часто в этой роли выступает корпус изделия) или радиатор.

Условно графическое обозначение на схемах

Все приборы имеют графическое обозначение. Это необходимо, чтобы не загромождать электрическую схему. Стабилитрон имеет свое условно-графическое обозначение, которое утверждено межгосударственным стандартом единого стандарта конструкторской документации (ЕСКД).

На рисунке снизу представлено как обозначается на схеме по ГОСТ 2.730-73, стабилитрон обозначается практически как диод, так как, в сущности, является одной из его разновидностей.

Для правильного включения следует различать, где плюс, где минус. Если смотреть на приведенный выше рисунок, то на нем плюс (анод) расположен слева, а минус (катод) справа. Согласно ЕСКД размеры УГО диодов должны составлять 5/5 мм. Это иллюстрирует рисунок снизу.

Коэффициент выпрямления

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Он отражает качество выпрямителя.

Коэффициент выпрямления

Его можно рассчитать: он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Полярность светодиодов

Полярность светодиодовПолярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света.  Полярность – это способность пропускать электрический ток в одном направлении.  

Полярность моно определить несколькими способами: 

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа  SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.  
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.  
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.  
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.  

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.  

Заключение

В статье описаны все тонкости и нюансы работы и устройства выпрямительных диодов и схема их устройства. Более подробно о них можно узнать из стать Что такое диоды. 

В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.go-radio.ru

www.electrik.info

www.gaw.ru

www.sesaga.ru

Предыдущая

ПолупроводникиКак устроен туннельный диод?

Следующая

ПолупроводникиМаркировка различных видов диодов

Плюсы и минусы

Полупроводниковые диоды имеют как преимущества, так и недостатки. К первым можно отнести:

  • доступность – элементы стоят недорого;
  • взаимозаменяемость – при выходе из строя легко подобрать и установить аналогичный;
  • высокая пропускная способность;
  • простой принцип работы.

Из недостатков – уязвимость к внешним воздействиям и возможные неисправности. Это могут быть:

  • обрыв перехода;
  • нарушение герметичности;
  • пробой перехода.

Однако устранить повреждения и заменить устройство несложно, поэтому минусы можно считать несущественными.

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.

Достоинства и недостатки светодиодов

Плюсы

  • Высокая механическая и вибрационная стойкость.
  • Небольшой разогрев.
  • Маленькие габаритные размеры, легкий
  • Долговечность.
  • Низкое энергопотребление и мощность.
  • Возможность регулирования интенсивности свечения.
  • Высокие декоративные качества: разнообразие цветов и оттенков свечения.
  • Безынерционность: включаются сразу на полную мощность.
  • Возможность работы при низких температурах.
  • Низкая цена индикаторных светодиодов.
  • Безопасность: низкие рабочие значения напряжения и тока.

Минусы

  • Высокая цена SMD.
  • Ухудшения со временем качества кристалла: чем дольше светодиод работает, тем он тусклее.
  • Повышенные требования к источнику питания.
  • Недопустимы даже небольшие превышения минимальных и максимальных значений электрических параметров.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...
Электрик в Дом