Электромагнитная индукция

Что такое индуктивность

Этим термином обозначают зависимость, которая устанавливается между силой тока в проводнике (I) и созданным магнитным потоком (Ф):

L = Ф/ I.

С учетом базового определения несложно понять зависимость индуктивности от свойств окружающей среды, оказывающей влияние на распределение силовых линий. Определенное значение имеют размеры и конфигурация проводящего элемента.

Индуктивность подобна механической инерции. Только в данном случае речь идет о действиях с электрическими величинами. Этим коэффициентом характеризуют способность рассматриваемого компонента противодействовать изменению проходящего через него тока.

Конвертер индуктивности

Picture

Включение катушки индуктивности в цепи с постоянным и переменным током

В целом, мы определили, что такое катушка индуктивности, для чего она нужна, и какие характеристики для расчета ее параметров важны, однако до сих пор неискушенному читателю наверняка не понятно, как будут изменяться параметры протекающего через эту деталь тока.

Цепь, питаемая постоянным током

Катушка индуктивности в цепи постоянного тока

Катушка индуктивности в цепи постоянного тока

Чтобы упростить изложение, будем проводить очень простой опыт:

  • Для начала нам потребуется блок питания, способный выдавать стабильные 12 Вольт напряжения на выходе, 12-ти вольтовая лампочка накаливания для создания сопротивления, а также сама катушка индуктивности.
Стержень из феррита

Стержень из феррита

  • Катушку мы соберем своими руками из куска лакированной медной проволоки и ферритового стержня.
Изготовление катушки индуктивности

Изготовление катушки индуктивности

  • Инструкция предельно проста — берем проволоку и наматываем ее на стержень, после чего зачищаем ножом концы, чтобы можно было подсоединить клеммы от блока питания и подпаять провода.
  • Цена такой схемы минимальна, так что можете без проблем повторить опыт при желании дома.
Измерение индуктивности собранной катушки

Измерение индуктивности собранной катушки

  • При помощи LC-метра измеряем индуктивность полученной детали. Как видно из фото выше, в рассматриваемом примере она составила 132 мкГн.
Схема с включенной катушкой индуктивности

Схема с включенной катушкой индуктивности

  • Теперь берем все наши детали и соединяем их по приведенной выше схеме.
Схема включена в сеть

Схема включена в сеть

  • Вот что получилось на практике. Как видим, постоянный ток протекает через катушку практически беспрепятственно, если не учитывать естественное сопротивление проводника, ведь ток не меняет своего направления на противоположное.
На данной схеме лампочку заменяет резистор, но это не важно

На данной схеме лампочку заменяет резистор, но это не важно

  • Значит ли это, что катушка индуктивности неприменима в цепях с постоянным током? Вовсе нет! Вот другая схема, в которую, как мы видим, уже включен некий выключатель, способный размыкать цепь. Именно в момент замыкания и происходит самое интересное.
  • Поскольку до этого ток был равен нулю, он начнет изменяться и расти, из-за чего изменится магнитное поле катушки, что в свою очередь приведет к возникновению ЭДС. В катушке появится индукционный ток, который потечет в обратном направлении основного потока от источника питания.
  • Именно в момент включения величина ЭДС будет максимальной, так как скорость изменения тока в этот момент наиболее высока, а значит, ток катушки индуктивности равен нулю.
  • Что произойдет дальше? А дальше мы увидим, что ток в катушке индуктивности начнет расти, тогда как ЭДС, наоборот, снижаться. Вот как это выглядит на графике.
Uвх – входное напряжение питания; Il- изменение величины тока; Ul – напряжение на катушке

Uвх – входное напряжение питания; Il- изменение величины тока; Ul – напряжение на катушке

  • На верхнем графике изображено изменение напряжения входной сети, сразу после включения. Как видим, моментально появляется постоянное значение.
  • Дальше показано, как меняется величина тока, протекающего через катушку. Он тоже достигает постоянно значения, но не сразу, а спустя какое-то время.
  • Напряжение на катушке (нижний график) также вырастает моментально, но тут же начинает падать. При этом обратите внимание, что графики силы тока и напряжения зеркально противоположны.
  • Если все это перенести на наш опыт с лампой, то мы увидим, что после соединения цепи через выключатель, она загорится не сразу, а с некоторой задержкой.

Похожая ситуация будет и при размыкании цепи.

Физические процессы в катушке при размыкании цепи

Физические процессы в катушке при размыкании цепи

По графикам видна противоположная ситуация, означающая, что лампочка продолжить гореть еще какое-то время после размыкания цепи.

Дело в том, что при прекращении подачи питания, в катушке снова возникнет ЭДС, однако ток индукции потечет теперь в том же направлении, что и от источника питания, то есть запасенная энергия в катушке, поддержит питание цепи.

Включение в цепь с переменным током

Теперь давайте проведем другой опыт, в котором подключим сделанную ранее катушку к источнику питания переменного тока.

Схема включения катушки индуктивности в цепь переменного тока

Схема включения катушки индуктивности в цепь переменного тока

  • Для создания приведенной схемы и снятия показаний нам потребуются: генератор частоты, осциллограф, резистор на 100 Ом и сама катушка.
Схема в сборе

Схема в сборе

  • На фото выше виден осциллограф, отображающий 2 синусоиды. Это каналы, соответствующие частотам генератора (красная) и резистора (желтая), который включен в цепь уже после катушки индуктивности.
  • Опыт с постоянным током показал, что катушка индуктивности при неизменном токе, никак не изменяет параметры тока, то есть не оказывает ему никакого сопротивления, а изменения случаются лишь во время включения и выключения питания.
  • Теперь же, при помощи генератора, мы сможем посмотреть, как изменится сопротивление катушки, вследствие увеличения частот.
Ток имеет частоту 1 кГц

Ток имеет частоту 1 кГц

  • Для начала подадим ток частотой в 1 кГц. Как видно из показаний, сигнал на выходе ничем не отличается от входного – сохранились и частота, и амплитуда.
Частота в 100 кГц

Частота в 100 кГц

  • Наращиваем частоту, останавливаясь на 100 кГц-ах. По графикам видно, что произошло какое-то изменение. А именно, уменьшилась амплитуда (ток стал выравниваться) и желтый график сместился вправо (появилась задержка) – это явление называет сдвигом фаз, то есть разницей между начальными и итоговыми замерами величин.

Интересно знать! Чтобы иметь возможность измерить сдвиг фаз, необходимо чтобы сигналы имели одинаковую частоту. Амплитуда значения не имеет.

Сдвиг фаз

Сдвиг фаз

Давайте посмотрим, что произойдет, если частоту увеличить еще.

Частота в 500 кГц

Частота в 500 кГц

  • По графикам видно, что тенденция сохранилась. Фаза сдвинулась еще сильнее, а амплитуда упала до 480 милливольт, хотя изначально равнялась практически 2 Вольтам.
Частота в 2 Мегагерца

Частота в 2 Мегагерца

  • Выставляем максимальную частоту, что способен выдать наш генератор, и видим падение амплитуды до 120 мВ, и смещение фазы практически на 90 градусов.
  • Отсюда можно сделать вывод, что с увеличением частоты питающего тока сопротивление катушки индуктивности будет расти. При этом происходит сдвиг фаз, максимальное значение которого составляет 90 градусов.

Сопротивление катушки напрямую зависит от ее индуктивности и рассчитывается по следующей формуле.

Расчет сопротивления катушки индуктивности

Расчет сопротивления катушки индуктивности

Работает при этом катушка все по тому же принципу.

Изменение тока и ЭДС самоиндукции

Изменение тока и ЭДС самоиндукции

На графике показана зависимость тока и ЭДС от времени. Почему она выглядит именно так?

  • Мы уже выяснили на примере постоянного тока, что ЭДС прямопропорциональна скорости, с которой изменяется сила тока. Собственно на графике и показывается эта зависимость.
  • Рассмотрим часть графика. Между точками 1 и 2 ток изменяется, причем вначале изменение весьма резкое, но чем ближе к точке 2, тем оно сильнее замедляется, а в некотором промежутке времени и вовсе остается почти одинаковым.
  • Отсюда следует, что скорость изменения тока выше около точки 1, а значит, в тот момент времени ЭДС и будет самым высоким.
  • Также мы помним, что направление ЭДС противоположно основному току, то есть принимает отрицательное значение. Вот собственно и показанная зависимость – ток от точки 1 до точки 2 растет, а ЭДС падает, при прямой зависимости от скорости изменения тока.
  • Идем дальше – промежуток 2-3. Ток у нас падает – сначала с медленной, а затем быстрой скоростью. ЭДС же, наоборот, растет, принимая положительное значение. И так далее, по аналогии.

Теперь, что касается знаков. На участке 1-2, у тока и ЭДС они противоположные, а значит, ЭДС тормозит ток, препятствуя его возрастанию, из-за того что они направлены навстречу друг другу. Далее идет участок 2-3, на котором ток и ЭДС выравниваются по знакам, а значит ЭДС побежит в ту же сторону, поддерживая убывающий ток.

Вот мы и пришли к тому факту, что току, протекающему в цепи, катушка индуктивности оказывает индуктивное или реактивное сопротивление. Возвращаясь к формуле расчета этого сопротивления, видим, что, так как частота в постоянном токе равно 0, сопротивление не оказывается, и наоборот, высокая частота переменного тока, увеличивает сопротивление катушки.

Так, мы что-то забыли! Да, конечно же! Что будет в это время с напряжением?

Зависимость напряжения и тока от времени

Зависимость напряжения и тока от времени

Из графика видно, что ток относительно напряжения сдвинут по фазе на ¼ такта, или на 90 градусов (отстает), что является одним из важнейших свойств цепей переменного тока, с включенной катушкой индуктивности.

Как все это можно задействовать на практике. Самый банальный пример – это фильтр низких частот (ФНЧ). Мы увидели, что сигнал с высокой частотой проходит намного хуже, тогда как низкочастотный, не испытывает никакого сопротивления. Если включить катушку индуктивности  в цепь, запитывающую динамик, то мы получим обрезку высоких частот, превращая конструкцию в сабвуфер, играющий только басы.

На этом все. Мы разобрали, как меняется ток катушки индуктивности, ЭДС и напряжение. Кто бы мог подумать, что это простое устройство совершает такую работу? Этим то и прекрасен мир электротехники. Изучайте его, и вам откроется много интересного! В дополнение просмотрите лекцию из видео в этой статье. Удачи!

Влияние числа витков и способа намотки

Катушка индуктивности – это спираль, созданная из проводящего материала. Рабочие параметры изделий будут зависеть от особенностей конструкции. Индуктивность увеличивают:

  • большим количеством витков на единицу длины;
  • укрупнением поперечного сечения;
  • установкой в центральной части сердечника с ферромагнитными характеристиками.
От чего зависит индуктивность катушки, примеры типовых решений

От чего зависит индуктивность катушки, примеры типовых решений

Индуктивность одновиткового контура и индуктивность катушки

Для расчета элементарной конструкции подойдет преобразованная первая формула:

Ф = L * I.

Если рассматривается катушка, это выражение трансформируют в суммарное выражение магнитных потоков (Ψ), образованных отдельными витками:

Ψ = n * Ф.

Аналогичным образом:

Ln = L1 * n.

В действительности для точных расчетов учитывают различия силовых линий в центральной части и на краях конструкции. Для коррекции применяют более сложные выражения.

Индуктивность соленоида

Достаточно длинная электрическая катушка формирует внутри параллельные силовые линии. Для создания равномерного распределения энергии необходимо применять проводник с толщиной намного меньше, по сравнению с диаметром поперечного сечения. Разумеется, необходимо установить одинаковое расстояние между отдельными витками.

Такую конструкцию называют соленоидом. Плотность магнитного потока (B) в центральной рабочей части будет зависеть прямо пропорционально от длины (l) и следующих параметров:

  • количества витков (N);
  • тока (i);
  • плотности намотки (n – число контуров на единицу длины);
  • площади поперечного сечения (S);
  • объема (V = S * l).

Ниже приведены основные формулы для вычислений при отсутствии сердечника с учетом магнитной постоянной (m0 ≈ 1,257 *10-6 Гн/ м):

  • В = m0 * N * (i/l) = m0 * n * I;
  • Ψ = m0 * N2 * (I * S/l) = m0 * n2 * i *V;
  • L = m0 * N2 * (S/l) = m0 * n2 * V.

Индуктивность тороидальной катушки (катушки с кольцевым сердечником)

Для вычисления индукции катушки с сердечником в представленные выше формулы добавляют корректирующий множитель «m». С учетом особой формы изделия необходимо сделать следующие изменения:

L = N2 * ((m0 * m * S)/2π * rL), либо L = N2 * ((m0 * m * h)/2π) * ln(R/r),

где:

  • 2π * rL – длина рабочего элемента со средним радиусом rL;
  • R (r) и h – наружный (внутренний) радиус и высота тора, соответственно.

Коэффициентом «m» учитывают относительный показатель магнитной проницаемости определенного материала к значению для нейтральной среды (вакуума). Если m намного больше единицы, допускается не учитывать искажения поля, которые создает толстый проводник.

Формула индуктивности

Имеется большое множество разновидностей катушек индуктивности, отличающихся конфигурацией и областью применения. Ниже предоставлено ряд формул, показывающих, как найти индуктивность катушки:

  1. Измерение индуктивности стандартной катушки производится по формуле:

L=µ0µN2S/l, где:

  • L – характеристика катушки (Гн);
  • µ0 – магнитная const;
  • µ – проницаемость вещества сердечника;
  • N – количество оборотов проводника;
  • S – площадь диаметрального разреза (м2);
  • l – активная часть катушки в метрах.
  1. Индуктивность прямого проводника:

L=5.081(ln4l/d-1), где:

  • L – характеристика катушки (нГн);
  • l – размер проводника;
  • d – диаметр провода.
  1. Определять индуктивности катушек с воздушным сердечником возможно благодаря формуле:

L=r2N2/9r+10l, где:

  • L – характеристика катушки (мкГн);
  • r – наружный радиус;
  • l – активная часть катушки.
  1. Индуктивность многослойной катушки с воздушным сердечником:

L=0,8r2N2/6r+9l+10d, где:

  • L – характеристика катушки (мкГн);
  • r – усредненный радиус катушки;
  • l – активная часть катушки;
  • d – глубина катушки.
  1. Индуктивность плоской катушки:

L=r2N2/6r+11d, где:

  • L – характеристика катушки (мкГн);
  • r – усредненный радиус катушки;
  • d – глубина катушки.

В радиотехнике часто используется сопряжение нескольких катушек. При последовательном или параллельном соединении катушек индуктивности используются различные формулы, находящие общую индуктивность.

Суммарная индуктивность, при последовательном подсоединении, рассчитывается как:

Lобщ=L1+L2+…+Ln.

При параллельном соединении катушек суммарная индуктивность равна выражению:

1/Lобщ=1/L1+1/L2+…+1/Ln.

Единицы измерения

В системе единиц СИ индуктивность измеряется в генри, сокращённо Гн. Контур с током обладает индуктивностью в один генри, если при изменении тока на один ампер в секунду на выводах контура будет возникать напряжение в один вольт.

В вариантах системы СГС — системе СГСМ и в гауссовой системе индуктивность измеряется в сантиметрах (1 Гн = 10⁹ см; 1 см = 1 нГн); для сантиметров в качестве единиц индуктивности применяется также название абгенри. В системе СГСЭ единицу измерения индуктивности либо оставляют безымянной, либо иногда называют статгенри (1 статгенри ≈ 8,987552•10⁻¹¹ генри, коэффициент перевода численно равен 10⁻⁹ от квадрата скорости света, выраженной в см/с).

Заключение

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Более подробно об индуктивности рассказано в статье Что такое катушка индуктивности. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.jasic.ua

www.tkexp.ru

www.elektrica.info

www.electricalschool.info

www.tehnar.net.ua

www.tehinfor.ru

Предыдущая

ТеорияЧто такое электромагнитная индукция?

Следующая

ТеорияЧто такое анод и катод, в чем их практическое применение

Применение катушек в технике

Явление электромагнитной индукции известно уже давно и широко применяется в технике. Примеры использования:

  • Что такое индуктивностьсглаживание пульсаций и помех, накопление энергии;
  • создание магнитных полей в различных устройствах;
  • фильтры цепей обратной связи;
  • создание колебательных контуров;
  • трансформаторы (устройство из двух катушек, связанных индуктивно);
  • силовая электротехника использует для ограничения тока при к. з. на ЛЭП (катушки индуктивности, называются реакторами);
  • ограничение тока в сварочных аппаратах — катушки индуктивности делают его работу стабильнее, уменьшая дугу, что позволяет получить ровный сварочный шов, имеющий наибольшую прочность;
  • применение катушек в качестве электромагнитов различных исполнительных механизмов;
  • обмотки электромагнитных реле;
  • индукционные печи;
  • установление качества железных руд, исследование горных пород при помощи определения магнитной проницаемости минералов.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 351-355, 432-434.
  2. Жилко В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. Обучения с 12-летним сроком обучения (базовый и повышенный уровни) / В.В. Жилко, Л.Г. Маркович. — Мн.: Нар. асвета, 2008. — С. 183-188.
  3. Мякишев, Г.Я. Физика : Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. — М.: Дрофа, 2005. — С. 417-424.

Добротность катушки индуктивности

На практике катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток  в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению.

Добротность катушки индуктивности может быть найдена через следующую формулу:

Добротность катушки индуктивности

 где R является собственным сопротивлением обмотки.

Катушка индуктивности

По определению, катушка индуктивности — это винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Как следствие, при протекании через катушку переменного электрического тока, наблюдается его значительная инерционность, которую можно наблюдать в описанном выше эксперименте. В высокочастотной технике катушка индуктивности может состоять из одного витка или его части, в предельном случае на сверхвысоких частотах для создания индуктивности используется отрезок проводника, который обладает так называемой распределённой индуктивностью (полосковые линии).

Видео

«;cachedBlocksArray[80431] = «

«;cachedBlocksArray[80429] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-181’, renderTo: ‘yandex_rtb_R-A-263154-181’, async: true }, function() { var g = document.createElement(‘ins’); g.className = ‘adsbygoogle’; g.style = ‘display:block;text-align:center;width:660px;height:420px;’ g.setAttribute(‘data-ad-client’, ‘ca-pub-5399081021257607’); g.setAttribute(‘data-ad-slot’, ‘6458750303’); g.setAttribute(‘data-ad-format’, ‘Rectangle’); g.setAttribute(‘data-ad-layout’, ‘true’); g.setAttribute(‘data-full-width-responsive’, ‘in-article’); document.getElementById(‘yandex_rtb_R-A-263154-181’).appendChild(g); (adsbygoogle = window.adsbygoogle || []).push({}); }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80427] = «

«;cachedBlocksArray[80426] = «

«;cachedBlocksArray[80423] = «

«;cachedBlocksArray[80439] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-206’, renderTo: ‘yandex_rtb_R-A-263154-206’, async: true }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80433] = «

«+»ipt>

(adsbygoogle = window.adsbygoogle || []).push({});

«+»ipt>»;cachedBlocksArray[80422] = «

«;cachedBlocksArray[80438] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-138’, renderTo: ‘yandex_rtb_R-A-263154-138’, async: true }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80430] = «

«;cachedBlocksArray[80428] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-180’, renderTo: ‘yandex_rtb_R-A-263154-180’, async: true }, function() { var g = document.createElement(‘ins’); g.className = ‘adsbygoogle’; g.style = ‘width:580px;height:400px;top:0;right:0;bottom:0;left:0;margin:auto;display:block;’; g.setAttribute(‘data-ad-client’, ‘ca-pub-5399081021257607’); g.setAttribute(‘data-ad-slot’, ‘5810429370’); document.getElementById(‘yandex_rtb_R-A-263154-180’).appendChild(g); (adsbygoogle = window.adsbygoogle || []).push({}); }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80425] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-162’, renderTo: ‘yandex_rtb_R-A-263154-162’, async: true }, function() { var g = document.createElement(‘ins’); g.className = ‘adsbygoogle’; g.style = ‘width:580px;height:400px;top:0;right:0;bottom:0;left:0;margin:auto;display:block;’; g.setAttribute(‘data-ad-client’, ‘ca-pub-5399081021257607’); g.setAttribute(‘data-ad-slot’, ‘2323428743’); document.getElementById(‘yandex_rtb_R-A-263154-162’).appendChild(g); (adsbygoogle = window.adsbygoogle || []).push({}); }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80424] = «

«;

Оценка статьи:

loading.gif

Загрузка…

Последовательное и параллельное соединение катушек индуктивности

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

последовательное соединение катушек индуктивности

А при параллельном соединении получаем вот так:

параллельное соединение катушек индуктивности

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек.  Это может привести к неправильным показаниям общей индуктивности.

Опыты

В заключение хотелось бы рассказать о некоторых любопытных свойствах катушек индуктивности, которые вы могли бы сами понаблюдать, имея под рукой простейшие материалы и доступные приборы. Для проведения опытов нам потребуется отрезки изолированного медного провода, ферритовый стержень и любой современный мультиметр с функцией измерения индуктивности. Вспомним, что любой проводник с током создаёт вокруг себя магнитное поле такого вида, показанное на рисунке 7.

Рис. 8. Магнитное поле катушки с током.

Рис. 8. Магнитное поле катушки с током.

Намотаем на ферритовый стержень четыре десятка витков провода с небольшим шагом (расстоянием между витками). Это будет катушка №1. Затем намотаем такое же количество витков с таким же шагом, но с обратным направлением намотки. Это будет катушка №2. И затем намотаем 20 витков в произвольном направлении вплотную. Это будет катушка №3. Затем аккуратно снимем их с ферритового стержня. Магнитное поле таких катушек индуктивности выглядит примерно так, кака показано на рис. 8.

Рис. 10.

Рис. 10.

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. На рисунке 8 показана катушка с немагнитным сердечником, роль немагнитного сердечника исполняет воздух. На рис. 9 показаны примеры катушек индуктивности с магнитным сердечником, который может быть замкнутым или разомкнутым.

Рис. 11.

Рис. 11.

В основном используют сердечники из феррита и пластин из электротехнической стали. Сердечники повышают индуктивность катушек в разы. В отличие от сердечников в форме цилиндра, сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, так как магнитный поток в них замкнут.

Рис. 12.

Рис. 12.

Подключим концы мультиметра, включенного в режим измерения индуктивности, к концам катушки №1. Индуктивность такой катушки чрезвычайно мала, порядка нескольких долей микрогенри, поэтому прибор ничего не показывает (рис. 10). Начнём вводить в катушку ферритовый стержень (рис. 11). Прибор показывает порядка десятка микрогенри, причем при продвижении катушки к центру стержня её индуктивность возрастает примерно в три раза (рис. 12).

Рис. 13.

Рис. 13.

По мере продвижения катушки к другому краю стержня, значение индуктивности катушки опять падает. Вывод: индуктивность катушек может регулироваться путем перемещения в них сердечника, и максимальное её значение достигается при расположении катушки на ферритовом стержне (или, наоборот, стержня в катушке) в центре. Вот мы и получили настоящий, пусть и несколько неуклюжий, вариометр. Проделав вышеописанный опыт с катушкой №2, мы получим аналогичные результаты, то есть направление намотки на индуктивность не влияет.

Рис. 14.

Рис. 14.

Уложим витки катушки №1 или №2 на ферритовом стержне поплотнее, без зазоров между витками, и снова измерим индуктивность. Она увеличилась (рис. 13).

Рис. 15.

Рис. 15.

А при растягивании катушки по стержню её индуктивность уменьшается (рис. 14). Вывод: изменяя расстояние между витками можно подстраивать индуктивность, а для максимальной индуктивности наматывать катушку надо «виток к витку». Приёмом подстройки индуктивности путём растягивания или сжатия витков частенько пользуются радиотехники, настраивая свою приёмопередающую аппаратуру на нужную частоту.

Установим на ферритовый стержень катушку №3 и измерим её индуктивность (рис. 15). Число витков уменьшилось в два раза, а индуктивность уменьшилась в четыре раза. Вывод: чем меньше количество витков — тем меньше индуктивность, и нет линейной зависимости между индуктивностью и числом витков.

Литература

Автор статьи: Sergey Akishkin

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Электротехника

Электротехника

— область технических наук, изучающая получение, распределение, преобразование и использование электрической энергии. Электротехника включает в себя такие области техники как электроэнергетику, электронику, системы управления, обработку сигналов и связь.

Конвертер индуктивности

Индуктивность — свойство проводника, по которому протекает изменяющийся электрический ток, создавать электродвижущую силу как в самом проводнике (самоиндукция), так и в соседних проводника (взаимоиндукция). Индуктивность определяется как коэффициент пропорциональности между текущим в замкнутом контуре электрическим током, и магнитным потоком, создаваемым этим током через поверхность, краем которой является этот контур.

В Международной системе единиц (СИ) индуктивность измеряется в генри (Гн). Цепь имеет индуктивность один генри, если изменение тока со скоростью один ампер в секунду создаёт ЭДС индукции, равную одному вольту.

Использование конвертера «Конвертер индуктивности»

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Пользуйтесь конвертером для преобразования нескольких сотен единиц в 76 категориях или несколько тысяч пар единиц, включая метрические, британские и американские единицы. Вы сможете перевести единицы измерения длины, площади, объема, ускорения, силы, массы, потока, плотности, удельного объема, мощности, давления, напряжения, температуры, времени, момента, скорости, вязкости, электромагнитные и другие.
Примечание. В связи с ограниченной точностью преобразования возможны ошибки округления. В этом конвертере целые числа считаются точными до 15 знаков, а максимальное количество цифр после десятичной запятой или точки равно 10.

Для представления очень больших и очень малых чисел в этом калькуляторе используется компьютерная экспоненциальная запись, являющаяся альтернативной формой нормализованной экспоненциальной (научной) записи, в которой числа записываются в форме a · 10x. Например: 1 103 000 = 1,103 · 106 = 1,103E+6. Здесь E (сокращение от exponent) — означает «· 10^», то есть «…умножить на десять в степени…». Компьютерная экспоненциальная запись широко используется в научных, математических и инженерных расчетах.

  • Выберите единицу, с которой выполняется преобразование, из левого списка единиц измерения.
  • Выберите единицу, в которую выполняется преобразование, из правого списка единиц измерения.
  • Введите число (например, «15») в поле «Исходная величина».
  • Результат сразу появится в поле «Результат» и в поле «Преобразованная величина».
  • Можно также ввести число в правое поле «Преобразованная величина» и считать результат преобразования в полях «Исходная величина» и «Результат».

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Канал Конвертера единиц TranslatorsCafe.com на YouTube

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...
Электрик в Дом