Цепь переменного тока с активным сопротивлением

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента  – резистора, который, как говорят, обладает активным сопротивлением. Еще иногда его называют омическим.  Как нам говорит вики-словарь, “активный  – это деятельный, энергичный, проявляющий инициативу”. Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

Активное и реактивное сопротивление

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Активное сопротивление проводов и кабелей

Из электротехники известно, что полное сопротивление при равных условиях переменному и постоянному току будут отличаться. Касается это также проводов и кабелей. Это вызвано тем, что переменный ток распределяется по сечению неравномерно (поверхностный эффект). Однако для проводов из цветных металлов и с частотой переменного напряжения 50 Гц этот эффект не оказывает слишком большого влияния и им можно пренебречь. Таким образом, при расчете проводников из цветных металлов, их сопротивления переменному и постоянному току принимаются равными.

На практике активное сопротивление медных и алюминиевых проводников рассчитывают по формуле:

aktivnoe-soprotivlenie-provodov-i-kabelej

Где: l – длина в км, γ – удельная проводимость материала провода м/ом∙мм2, r0 – активное сопротивление 1 км провода на фазу Ом/км, s – площадь поперечного сечения, мм2.

Величина r0, как правило, берется из таблиц справочников.

На активное сопротивление провода влияет и температура окружающей среды. Величину r0 при температуре Θ можно определить по формуле:

aktivnoe-soprotivlenie-provodov-i-kabelej-pri-razlichnyx-znacheniyax-okruzhayushhej-sredy

Где: α – температурный коэффициент сопротивления; r20 – активное сопротивление при температуре 20 0С, γ20 – удельная проводимость при температуре в 20 0С.

Стальные провода обладают значительно большими активными сопротивлениями, чем аналогичные провода из цветных металлов. Его увеличение обусловлено значительно меньшей величиной удельной проводимости и поверхностным эффектом, который у стальных проводов выражен гораздо более ярко, чем у алюминиевых или медных. Более того, в стальных проводах присутствуют потери активной энергии на вихревые токи и перемагничивание, что в схемах замещения линий учитывают дополнительной составляющей активного сопротивления.

Активное сопротивление стальных проводов (в отличии от проводов из цветных металлов) сильно зависит от величины протекаемого тока, поэтому использовать постоянное значение удельной проводимости при расчетах нельзя.

Активное сопротивление стальных проводов в зависимости от протекающего тока аналитически выразить весьма трудно, поэтому для его определения используют специальные таблицы.

Физический смысл реактивного сопротивления

В катушках и конденсаторах при подаче напряжения происходит накопление энергии в виде магнитных и электрических полей, что требует некоторого времени.

Магнитные поля в сетях переменного тока изменяются вслед за меняющимся направлением движения зарядов, при этом оказывая дополнительное сопротивление.

Кроме того, возникает устойчивый сдвиг фаз напряжения и силы тока, а это приводит к дополнительным потерям электроэнергии.

Активное и реактивное сопротивление, свойства и разновидности

Рассмотрим два вида этого сопротивления: емкостное и индуктивное.

Для трансформаторов, соленоидов, обмоток генераторов и моторов характерно индуктивное сопротивление. Емкостный вид сопротивления имеют конденсаторы. Чтобы определить соотношение напряжения и тока, нужно знать значение обоих видов сопротивления, которое оказывает проводник.

Реактивное сопротивление образуется при помощи снижения реактивной мощности, затраченной на образование магнитного поля в цепи. Снижение реактивной мощности создается путем подключения к трансформатору прибора с активным сопротивлением.

Chto-takoe-aktivnoe-soprotivlenie-peremennogo-toka5.jpg

Конденсатор, подключенный в цепь, успевает накопить только ограниченную часть заряда перед изменением полярности напряжения на противоположный. Поэтому ток не снижается до нуля, так как при постоянном токе. Чем ниже частота тока, тем меньше заряда накопит конденсатор, и будет меньше создавать противодействие току, что образует реактивное сопротивление.

Иногда цепь имеет реактивные компоненты, но в результате реактивная составляющая равна нулю. Это подразумевает равенство фазного напряжения и тока. В случае отличия от нуля реактивного сопротивления, между током и напряжением образуется разность фаз.

Катушка имеет индуктивное сопротивлением в схеме цепи переменного тока.

Chto-takoe-aktivnoe-soprotivlenie-peremennogo-toka6.jpg

В идеальном виде ее активное сопротивление не учитывают. Индуктивное сопротивление образуется с помощью ЭДС самоиндукции. При повышении частоты тока возрастает и индуктивное сопротивление.

На индуктивное сопротивление катушки оказывает влияние индуктивность обмотки и частота в сети.

Конденсатор образует реактивное сопротивление из-за наличия емкости. При возрастании частоты в сети его емкостное противодействие (сопротивление) снижается. Это дает возможность активно его применять в электронной промышленности в виде шунта с изменяемой величиной.

Осциллограмма силы тока на активном сопротивлении

В данном опыте нам не обязательно знать номинал силы тока в цепи. Мы будем просто смотреть, от чего зависит сила тока и изменяется ли вообще?

Поэтому,  наша схема примет вот такой вид:

как измерить форму силы тока в цепи

В этом случае шунтом будет являться резистор сопротивлением в 0,5 Ом. Почему именно 0,5 Ом? Да потому что он не будет сильно греться, так как обладает маленьким сопротивлением, а также  его номинал вполне достаточен, чтобы снять с него напряжение.

Осталось снять напряжение с генератора, а также со шунта с помощью осциллографа. Если вы не забыли, со шунта мы снимаем осциллограмму силы тока в цепи. Красная осциллограмма – это напряжение с генератора Uген , а желтая осциллограмма  – это напряжение с шунта Uш , в нашем случае  – сила тока.  Смотрим, что у нас получилось:

Частота 28 Герц:

осциллограмма активного сопротивления

Частота 285 Герц:

Активное и реактивное сопротивление

Частота 30 Килогерц:

Активное и реактивное сопротивление

Как вы видите, с ростом частоты сила тока у нас осталась такой же.

Давайте побалуемся формой сигнала:

Активное и реактивное сопротивление

Активное и реактивное сопротивление

Как мы видим, сила тока  полностью повторяет форму сигнала напряжения.

Итак, какие можно сделать выводы?

1) Сила тока через активное (омическое) сопротивление имеет такую же форму, как и форма напряжения.

2) Сила тока и напряжение на активном сопротивлении совпадают по фазе, то есть куда напряжение, туда и ток. Они двигаются синфазно, то есть одновременно.

3) С ростом частоты ничего не меняется (если только на очень высоких частотах).

Емкостное сопротивление

Ёмкостное, оно же реактивное, сопротивление принципиально зависит от частоты напряжения. Данная связь хорошо видна на графике, приведённом ниже. Чем выше частота, тем меньше реактивное сопротивление. Очевидно это и из вышеприведённой формулы. Переменная f (частота) стоит в знаменателе. Поэтому с её увеличением Xc будет уменьшаться.

Зависимость от частоты

Зависимость от частоты

Удельное сопротивление

Как узнать сопротивление материала, если по нему не течет ток и у нас нет омметра? Для это существует специальная величина —удельное электрическое сопротивление материалов

(это табличные значения, которые определены опытным путем для большинства металлов). С помощью этого значения и физических величин материала, мы можем вычислить сопротивление по формуле:

R

где,p— удельное сопротивление (единицы измерения ом*м/мм2);

l — длина проводника (м);

S — поперечное сечение (мм2).

Закон Ома для цепей переменного тока

Определение 2

Выражение вида:

\[I_m=\frac{U_m}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}\left(12\right).\]

где

\[Z=\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}(13)\]

называют полным электросопротивлением, или импедансом, иногда называют законом Ома для переменного тока. Однако необходимо помнить, что формула (12) относится к амплитудам тока и напряжения, а не мгновенным их значениям.

Пример 1

Задание: Чему равно действующее значение силы тока в цепи. Цепь переменного тока состоит из последовательно соединенных: конденсатора емкостью $C$, катушки индуктивности $L$, активного сопротивления $R$. На зажимы цепи подается напряжение действующее напряжение $U$ частота которого $\nu$.

Решение:

Так как все элементы цепи соединены последовательно, то сила тока во всех элементах одинакова.

Амплитудное значение силы тока выражается «законом Ома для переменного тока»:

\[I_m=\frac{U_m}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}\left(1.1\right)\]

оно связано с действующим значением силы тока как:

\[I=\frac{I_m}{\sqrt{2}}\left(1.2\right).\]

В условиях задачи мы имеем действующее значение напряжения $U$, нам в формуле (1.1) требуется амплитуда напряжения, используя формулу:

\[U=\frac{U_m}{\sqrt{2}}\to U_m=\sqrt{2}U\left(1.3\right).\]

Подставим в формулу (1.2) формулы (1.1) и (1.3), получим:

\[I=\frac{1}{\sqrt{2}}\frac{\sqrt{2}U}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}=\frac{U}{\sqrt{R^2+{\left(\omega L-\frac{1}{\omega C}\right)}^2}}=\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}},\]

где $\omega =2\pi \nu .$

Ответ: $I=\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}}.$

Пример 2

Задание: Используя условия задачи в первом примере, найдите действующие значения напряжений на катушке индуктивности ($U_L$), сопротивлении ($U_R$), конденсаторе ($U_C$).

Решение:

Используем результат примера 1. Напряжение на катушке индуктивности выражается формулой:

\[U_L=I\omega L=2 \pi \nu L\frac{U}{\sqrt{R^2+{\left(2 \pi \nu L-\frac{1}{2 \pi \nu C}\right)}^2}}.\]

Напряжение на активном сопротивлении ($U_R$) равно:

\[U_R=IR=\frac{UR}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}}.\]

Напряжение на конденсаторе ($U_C$) определяется как:

\[U_C=\frac{I}{C2 \pi \nu}=\frac{1}{C2 \pi \nu}\frac{U}{\sqrt{R^2+{\left(2 \pi \nu L-\frac{1}{2 \pi \nu C}\right)}^2}}.\]

Ответ: $U_L=2\pi \nu L\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}},\ U_R=\frac{UR}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}},U_C=\frac{1}{C2\pi \nu }\frac{U}{\sqrt{R^2+{\left(2\pi \nu L-\frac{1}{2\pi \nu C}\right)}^2}}.$

Компенсация реактивной мощности

С помощью электрических сетей осуществляется передача электроэнергии на значительные расстояния. В большинстве случаев она используется для питания электродвигателей, имеющих высокое индуктивное сопротивление и большое количество резистивных элементов. К потребителям поступает полная мощность, которая делится на активную и реактивную. В первом случае с помощью активной мощности совершается полезная работа, а во втором – происходит нагрев трансформаторных обмоток и электродвигателей.

Активное и реактивное сопротивление

Под действием реактивной составляющей, возникающей на индуктивных сопротивлениях, существенно понижается качество электроэнергии. Противостоять ее вредному воздействию помогает комплекс мероприятий по компенсации с использованием конденсаторных батарей. За счет емкостного сопротивления удается понизить косинус угла φ.

Компенсирующие устройства применяются на подстанциях, от которых электричество поступает к проблемным потребителям. Этот способ дает положительные результаты не только в промышленности, но и на бытовых объектах, снижая нагрузку на оборудование.

Как правильно измерять сопротивление

При работе с радиоаппаратурой иногда требуется измерять не только активностное, но и реактивное электросопротивление (индуктивность и емкость). Для измерений применяют косвенный метод использования мультиметра, а более точные значения получают при мостовом методе.

Активом сопротивляемости может выступать любой резистор

Косвенный метод наиболее прост в своей реализации, так как не требует дополнительных схем включения. Одна требуется наличие трех отдельных приборов: амперметра, вольтметра и ваттметра. Если измерить напряжение и силу электротока в цепи, то можно получить полное электросопротивление: Z=U*I  После измерения активностной мощности P, можно получить величину активного сопротивления отдельного элемента: R= P/I².

Обмотка трансформатора — один из примеров актива по превращению электроэнергии

Единицы измерения

Для правильного проведения всех расчетов важно понимать, какие величины в них используются, и что они обозначают:

  • Ёмкость – ед. изм. фарад, Ф;
  • Напряжение – вольт, В;
  • Сопротивление, в т.ч. и реактивное – ом, Ом;
  • Частота – герц, Гц;
  • Ток – ампер, А.

Свойства ёмкостей

Основное свойство состоит в их способности накапливать и отдавать электрический заряд. Оба этих процесса происходят не мгновенно, а за вполне определённый период, который поддаётся расчету. Данное свойство используется для создания различных времязадающих RC цепей. Если зарядить конденсатор до некоторого значения, то время его разряда через резистор R будет зависеть от ёмкости C.

RC цепь

RC цепь

Ещё одно распространённое свойство конденсаторов – это возможность ограничивать переменный ток. Вызвана она реактивом этих элементов. Ёмкость, включенная в цепь переменного тока, ограничивает его до значения I = 2pfCU. Здесь U – напряжение источника питания.

Дополнительная информация. Ёмкость, подключенная параллельно с катушкой, имеющей индуктивный характер сопротивления, называется колебательным контуром. Данная цепь обладает высокой амплитудой колебаний на резонансной частоте. Она применяется для выделения из множества окружающих радиосигналов именно того, на который требуется настроить приём.

Сопротивление – это одна их характеристик конденсатора, подключенного к цепи переменного тока. Понимание процессов, происходящих с этим элементом в подобных схемах, существенно расширяет сферу его использования. Реактивное сопротивление конденсаторов учитывается как в простых бытовых электроприборах, так и в сложной вычислительной технике.

Видео

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-214’, renderTo: ‘yandex_rtb_R-A-263154-214’, async: true }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80435] = «

«;cachedBlocksArray[80432] = «

«;cachedBlocksArray[80429] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-181’, renderTo: ‘yandex_rtb_R-A-263154-181’, async: true }, function() { var g = document.createElement(‘ins’); g.className = ‘adsbygoogle’; g.style = ‘display:block;text-align:center;width:660px;height:420px;’ g.setAttribute(‘data-ad-client’, ‘ca-pub-5399081021257607’); g.setAttribute(‘data-ad-slot’, ‘6458750303’); g.setAttribute(‘data-ad-format’, ‘Rectangle’); g.setAttribute(‘data-ad-layout’, ‘true’); g.setAttribute(‘data-full-width-responsive’, ‘in-article’); document.getElementById(‘yandex_rtb_R-A-263154-181’).appendChild(g); (adsbygoogle = window.adsbygoogle || []).push({}); }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80428] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-180’, renderTo: ‘yandex_rtb_R-A-263154-180’, async: true }, function() { var g = document.createElement(‘ins’); g.className = ‘adsbygoogle’; g.style = ‘width:580px;height:400px;top:0;right:0;bottom:0;left:0;margin:auto;display:block;’; g.setAttribute(‘data-ad-client’, ‘ca-pub-5399081021257607’); g.setAttribute(‘data-ad-slot’, ‘5810429370’); document.getElementById(‘yandex_rtb_R-A-263154-180’).appendChild(g); (adsbygoogle = window.adsbygoogle || []).push({}); }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80427] = «

«;cachedBlocksArray[80426] = «

«;cachedBlocksArray[80425] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-162’, renderTo: ‘yandex_rtb_R-A-263154-162’, async: true }, function() { var g = document.createElement(‘ins’); g.className = ‘adsbygoogle’; g.style = ‘width:580px;height:400px;top:0;right:0;bottom:0;left:0;margin:auto;display:block;’; g.setAttribute(‘data-ad-client’, ‘ca-pub-5399081021257607’); g.setAttribute(‘data-ad-slot’, ‘2323428743’); document.getElementById(‘yandex_rtb_R-A-263154-162’).appendChild(g); (adsbygoogle = window.adsbygoogle || []).push({}); }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80424] = «

«;cachedBlocksArray[80423] = «

«;cachedBlocksArray[80422] = «

«;cachedBlocksArray[80441] = «

(function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: ‘R-A-263154-217’, renderTo: ‘yandex_rtb_R-A-263154-217’, async: true }); }); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, ‘yandexContextAsyncCallbacks’);

«+»ipt>»;cachedBlocksArray[80434] = «

«;cachedBlocksArray[80433] = «

«+»ipt>

(adsbygoogle = window.adsbygoogle || []).push({});

«+»ipt>»;

Оценка статьи:

1 звезда2 звезды3 звезды4 звезды5 звезд

(голосов:

3

, средняя оценка:

2,67

из 5)

loading.gif

Загрузка…

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...
Электрик в Дом