Что такое конденсатор, виды конденсаторов и их применение

Схема замещения конденсатора с параллельным соединением элементов

Реальный конденсатор (с потерями) можно представить эквивалентной схемой параллельного соединения активной G и емкостной Bс проводимостей (рис. 13.15), причем активная проводимость определяется мощностью потерь в конденсаторе G = Р/Uc2, а емкость — конструкцией конденсатора. Предположим, что проводимости G и Вс для такой цепи известны, а напряжение имеет уравнение

u = Umsinωt.

Требуется определить токи в цепи и мощность. 10 Исследование цепи с активным сопротивлением и цепи с емкостью показало, что при синусоидальном напряжении токи в них так же синусоидальны. При параллельном соединении ветвей G и Вс , согласно первому закону Кирхгофа, общий ток i равен сумме токов в ветвях с активной и емкостной проводимостями:

i = iG + ic,                                                      (13.30)

Учитывая, что ток iG совпадает по фазе с напряжением, а ток ic опережает напряжение на четверть периода, уравнение общего тока можно записать в следующем виде:

11

Внешний осмотр

Иногда достаточно одного взгляда, чтобы определить неисправный конденсатор на плате. В таких случаях нет смысла проверять его какими-либо приборами.Типичные неисправности конденсаторовКонденсатор подлежит замене, если визуальный осмотр показал наличие:

  • даже незначительного вздутия, следов подтеков;
  • механических повреждений, вмятин;
  • трещин, сколов (актуально для керамики).

Конденсаторы, имеющие любой из указанных признаков, эксплуатировать НЕЛЬЗЯ.

Ёмкость конденсаторов

        Основнойхарактеристикой конденсатора является его электрическая ёмкость (точнееноминальная ёмкость), которая определяет его заряд в зависимости отнапряжения на обкладках (q = CU). Типичные значения ёмкостиконденсаторов составляют от единиц пикофарад до сотен микрофарад.Однако существуют конденсаторы с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью bd407381dbb48ccc98056469548cd40d.png каждая, расположенных на расстоянии c69e01d2d0dfc7f852f22cd4ac875c32.png друг от друга, в системе СИ выражается формулой:4196a8cb56c38eb05ede36f85c2091ae.pngгде 84846c3ad81a4121d689f8061d2c9436.png — относительная диэлектрическая проницаемость среды, заполняющейпространство между пластинами (эта формула справедлива, лишь когда c69e01d2d0dfc7f852f22cd4ac875c32.png много меньше линейных размеров пластин).

        Дляполучения больших ёмкостей конденсаторы соединяют параллельно. При этомнапряжение между обкладками всех конденсаторов одинаково. Общая ёмкостьбатареи параллельно соединённых конденсаторов равна сумме ёмкостей всехконденсаторов, входящих в батарею.

Capacitorsparallel.png59144f5dd67a085a548cc4c7bb351adb.png

        Еслиу всех параллельно соединённых конденсаторов расстояние междуобкладками и свойства диэлектрика одинаковы, то эти конденсаторы можнопредставить как один большой конденсатор, разделённый на фрагментыменьшй площади.При последовательном соединении конденсаторов заряды всех конденсатороводинаковы. Общая ёмкость батареи последовательно соединённыхконденсаторов равна

Конденсатор что такое конденсатор ёмкость обозначения параметры характеристики типы виды конденсаторов условные графические обозначения, уроки начинающим, радиолюбителям59144f5dd67a085a548cc4c7bb351adb.png

        Этаёмкость всегда меньше минимальной ёмкости конденсатора, входящего вбатарею. Однако при последовательном соединении уменьшается возможностьпробоя конденсаторов, так как на каждый конденсатор приходится лишьчасть разницы потенциалов источника напряжения.Если площадь обкладок всех конденсаторов, соединённых последовательно,одинакова, то эти конденсаторы можно представить в виде одного большогоконденсатора, между обкладками которого находится стопка из пластиндиэлектрика всех составляющих его конденсаторов.

Свойства и выполняемые функции

Отмеченные накопительные способности определяются размерами пластин и расстоянием между ними, диэлектрическими характеристиками промежуточного слоя. Заряд сохраняется после отключения источника питания. Если подсоединить нагрузку, энергия может выполнять необходимые полезные функции.

Узкополосный фильтр

Узкополосный фильтр

На рисунке показано устройство, которое «вырезает» небольшой участок спектра. Показанная на графике рабочая частота определяется параметрами цепочки, составленной из конденсатора и катушки индуктивности. В данном примере выполняются функции фильтрации входного сигнала.

Заряд конденсатора. Напряжение

В самом начале переходного периода зарядки, напряжение между обкладками конденсатора равняется нулю. Как только на обкладках начинают появляться заряженные частицы, между разноименными зарядами возникает напряжение. Причиной этому является диэлектрик между пластинами, который «мешает» стремящимся друг к другу зарядам с противоположным знаком перейти на другую сторону конденсатора.

На начальном этапе зарядки, напряжение быстро растет, потому что большой ток очень быстро увеличивает количество заряженных частиц на обкладках. Чем больше заряжается конденсатор, тем меньше ток, и тeм медленнее растет напряжение. В конце переходного периода, напряжение на конденсаторе полностью прекратит рост, и будет равняться напряжению на источнике питания.

напряжение и ток конденсатора

Как видно на графике, сила тока конденсатора напрямую зависит от изменения напряжения.

Формула для нахождения тока конденсатора во время переходного периода:

формула тока конденсатора во время переходного периода

  • Ic — ток конденсатора
  • C — Емкость конденсатора
  • ΔVc/Δt – Изменение напряжения на конденсаторе за отрезок времени

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе.

Формула расчёта сопротивления конденсатора

Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние. Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Материал в тему: все о переменном конденсаторе.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X < 0, в элементе проявляется ёмкостное сопротивление.

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное – с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Импеданс элемента

Импеданс элемента.

Теги

Алюминиевый электролитический конденсаторКерамический конденсаторКонденсаторТипы конденсаторовЭлектролитический конденсаторЭлектронные компоненты

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.

Заключение

В данной статье были рассмотрены основные вопросы расчета сопротивления конденсаторов.  Больше информации можно найти в скачиваемой версии учебника по электромеханике “Что такое конденсаторы”

В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.amperof.ru

www.eduspb.com

www.beasthackerz.ru

www.electroandi.ru

www.websor.ru

Предыдущая

КонденсаторыСколько стоят керамические конденсаторы?

Следующая

КонденсаторыЧто такое ионистор?

Определение емкости неизвестного конденсатора

Способ №1: измерение емкости специальными приборами

Самый просто способ — измерить емкость с помощью прибора, имеющего функцию измерения емкостей. Это и так понятно, и об этом уже говорилсь в начале статьи и тут нечего больше добавить.Как проверить конденсатор на емкость с помощью цифрового мультиметраЕсли с приборами совсем туган, можно попробовать собрать простенький самодельный тестер. В интернете можно найти неплохие схемы (посложнее, попроще, совсем простая).

Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!

Способ №2: измерение емкости двух последовательно включенных конденсаторов

Иногда бывает так, что имеется мультиметр с измерялкой емкости, но его предела не хватает. Обычно верхний порог мультиметров — это 20 или 200 мкФ, а нам нужно измерить емкость, например, в 1200 мкФ. Как тогда быть?

На помощь приходит формула емкости двух последовательно соединенных конденсаторов:Формула эквивалентной емкости двух последовательных конденсаторовСуть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.

Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.Как измерить электролитический конденсатор большой емкости при помощи мультиметраОстается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:Как узнать емкость одного из конденсаторов, если известная общая емкость двух при последовательном включенииДавайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.

Подставляем эти цифры в формулу и получаем:Узнать емкость одного из конденсаторов в цепочке

Способ №3: измерение емкости через постоянную времени цепи

Как известно, постоянная времени RC-цепи зависит от величины сопротивления R и значения емкости Cх:Формула расчета постоянной времени для RC-цепиПостоянная времени — это время, за которое напряжение на конденсаторе уменьшится в е раз (где е — это основание натурального логарифма, приблизительно равное 2,718).

Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.Как измерить емкость конденсатора секундомеромДля повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)Сверхточные резисторыХотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).

Вот какой-то чел очень хорошо все рассказал на видео:

Другие способы измерения емкости

Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про проверку на обрыв.

Яркость свечения лампочки (см. метод поиска КЗ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.

Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:Измерение емкость конденсатора по мостовой схемеВращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40…85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.

Недостаток схемы — необходим генератор переменного напряжения, плюс требуется предварительная калиброка.

Электрическое сопротивление изоляции конденсатора — r

Сопротивление изоляции — этосопротивление конденсатора постоянному току, определяемое соотношениемr = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — токутечки.

Обозначение на схемах

Каждое семейство конденсаторов имеет своё обозначение, позволяющее визуально определить его тип (см. рис. 9).

Обозначение на схемахРис. 9. Обозначение на схемах

Эквивалентное последовательное сопротивление — R

        Эквивалентноепоследовательное сопротивление (ЭПС, англ. ESR) обусловлено главнымобразом электрическим сопротивлением материала обкладок и выводовконденсатора и контакта(-ов) между ними, а также потерями вдиэлектрике. Обычно ЭПС возрастает с увеличением частоты тока,протекающего через конденсатор.В большинстве случаев этим параметром можно пренебречь, но иногда(напр., в случае использования электролитических конденсаторов вфильтрах импульсных блоков питания) достаточно малое его значение можетбыть жизненно важным для надёжности устройства (см., напр., Capacitorplague(англ.)).

Применение

Конденсаторы применяются почти во всех областях электротехники. Перечислим лишь некоторые из них:

  • построение цепей обратной связи, фильтров, колебательных контуров;
  • использование в качестве элемента памяти;
  • для компенсации реактивной мощности;
  • для реализации логики в некоторых видах защит;
  • в качестве датчика для измерения уровня жидкости;
  • для запуска электродвигателей в однофазных сетях переменного тока.

Спомощью этого радиоэлектронного элемента можно получать импульсы большоймощности, что используется, например, в фотовспышках, в системах зажигания карбюраторныхдвигателей.

Номинальное напряжение

Второй по значимости характеристикой после емкости является максимальное номинальное напряжение конденсатора. Данный параметр обозначает максимальное напряжение, которое может выдержать конденсатор. Превышение этого значения приводит к «пробиванию» изолятора между пластинами и короткому замыканию. Номинальное напряжение зависит от материала изолятора и его толщины (расстояния между обкладками).

Следует отметить, что при работе с переменным напряжением нужно учитывать именно пиковое значение (наибольшее мгновенное значение напряжения за период). Например, если эффективное напряжение источника питания будет 50В, то его пиковое значение будет свыше 70В. Соответственно необходимо использовать конденсатор с номинальным напряжением более 70В. Однако на практике, рекомендуется использовать конденсатор с номинальным напряжением не менее в два раза превышающим максимально возможное напряжение, которое будет к нему приложено.

Температурный коэффициент ёмкости (ТКЕ) конденсаторов

ТКЕ — коэффициент измененияёмкости в зависимости от температуры. Таким образом значение ёмкости оттемпературы представляется линейной формулой:772326af15607de34a8ec45515b4f750.png

        где?T — увеличение температуры в °C или °К относительно нормальныхусловий, при которых специфицировано значение ёмкости. TKE применяетсядля характеристики конденсаторов со значительной линейной зависимостьюёмкости от температуры. Однако ТКЕ определяется не для всех типовконденсаторов. Для характеристики конденсаторов с выраженной нелинейнойзависимостью обычно указывают предельные величины отклонений отноминала в рабочем диапазоне температур.

Диэлектрическое поглощение конденсаторов

        Еслизаряженный конденсатор быстро разрядить до нулевого напряжения путёмподключения низкоомной нагрузки, а затем снять нагрузку и наблюдать занапряжением на выводах конденсатора, то мы увидим, что напряжениемедленно повышается. Это явление получило название диэлектрическоепоглощение или адсорбция электрического заряда. Конденсатор ведёт себятак, словно параллельно ему подключено множество последовательныхRC-цепочек с различной постоянной времени. Интенсивность проявленияэтого эффекта зависит в основном от свойств диэлектрика конденсатора.Наименьшим диэлектрическим поглощением обладают конденсаторы стефлоновым (фторопластовым) диэлектриком. Подобный эффект можнонаблюдать и на большинстве электролитических конденсаторов, но в них онявляется следствием химических реакций между электролитом и обкладками.

Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
Конденсаторы с газообразным диэлектриком.
Конденсаторы с жидким диэлектриком.
Конденсаторы с твёрдым неорганическимдиэлектриком: стеклянные (стеклоэмалевые, стеклокерамические,стеклоплёночные), слюдяные, керамические, тонкослойные изнеорганических плёнок.
Конденсаторы с твёрдым органическимдиэлектриком: бумажные, металлобумажные, плёночные, комбинированные -бумажноплёночные, тонкослойные из органических синтетических плёнок.
Электролитические иоксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаютсяот всех прочих типов прежде всего своей огромной удельной ёмкостью. Вкачестве диэлектрика используется оксидный слой на металле, являющийсяанодом. Вторая обкладка (катод) — это или электролит (вэлектролитических конденсаторах) или слой полупроводника (воксидно-полупроводниковых), нанесённый непосредственно на оксидныйслой. Анод изготовляется, в зависимости от типа конденсатора, изалюминиевой, ниобиевой или танталовой фольги.
Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:
Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
Переменные конденсаторы -конденсаторы, которые допускают изменение ёмкости в процессефункционирования аппаратуры. Управление ёмкостью может осуществлятьсямеханически, электрическим напряжением (вариконды, варикапы) итемпературой (термоконденсаторы). Применяются, например, врадиоприемниках для перестройки частоты резонансного контура.
Подстроечные конденсаторы -конденсаторы, ёмкость которых изменяется при разовой или периодическойрегулировке и не изменяется в процессе функционирования аппаратуры. Ихиспользуют для подстройки и выравнивания начальных ёмкостей сопрягаемыхконтуров, для периодической подстройки и регулировки цепей схем, гдетребуется незначительное изменение ёмкости.
Подстроечные конденсаторы -конденсаторы, ёмкость которых изменяется при разовой или периодическойрегулировке и не изменяется в процессе функционирования аппаратуры. Ихиспользуют для подстройки и выравнивания начальных ёмкостей сопрягаемыхконтуров, для периодической подстройки и регулировки цепей схем, гдетребуется незначительное изменение ёмкости.
зависимости от назначения можноусловно разделить конденсаторы на конденсаторы общего и специальногоназначения. Конденсаторы общего назначения используются практически вбольшинстве видов и классов аппаратуры. Традиционно к ним относятнаиболее распространенные низковольтные конденсаторы, к которым непредъявляются особые требования. Все остальные конденсаторы являютсяспециальными. К ним относятся высоковольтные, импульсные,помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

Краткое обозначение!Типы конденсаторов:
БМ — бумажный малогабаритный
БМТ — бумажный малогабаритный теплостойкий
КД — керамический дисковый
КЛС — керамический литой секционный
КМ — керамический монолитный
КПК-М — подстроечный керамический малогабаритный
КСО — слюдянной опресованный
КТ — керамический трубчатый
МБГ — металлобумажный герметизированный
МБГО — металлобумажный герметизированный однослойный
МБГТ — металлобумажный герметизированный теплостойкий
МБГЧ — металлобумажный герметизированный однослойный
МБМ — металлобумажный малогабаритный
ПМ — полистироловый малогабаритный
ПО — пленочный открытый
ПСО — пленочный стирофлексный открытый

tabl_c.pngtabl_c_cod.jpgПо материалам: wikipedia.org, radiopartal.tut.su, aes.at.ua

http://ur4nww.da.ru

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...
Электрик в Дом