Активное и реактивное сопротивление

Формулы, зависимости и виды индуктивности

Электрическая индуктивность L – это величина, равная коэффициенту пропорциональности между током I, протекающим в замкнутом контуре, и создаваемым им магнитным потоком, иначе называемым потокосцеплением Y:

Y = LI.

Если к выводам катушки на некоторое время приложить напряжение, то в ней начнёт протекать ток I и формироваться магнитное поле. Чем меньше индуктивность L, тем быстрее протекает данный процесс. В итоге рассматриваемый двухполюсник накопит некоторое количество потенциальной энергии. При отключении питания он будет стремиться её вернуть. В результате на выводах катушки образуется ЭДС самоиндукции E, которая многократно превышает изначально приложенное напряжение. Подобная технология ранее использовалась в магнето систем зажигания ДВС, а сейчас широко встречается в повышающих DC-DC преобразователях.

Формула ЭДС самоиндукции, здесь t – это время, в течение которого ток I уменьшится до нуля

Формула ЭДС самоиндукции, здесь t – это время, в течение которого ток I уменьшится до нуля

Простой DC-DC повышающий преобразователь

Простой DC-DC повышающий преобразователь

Катушка (она же – дроссель) – это радиодеталь с ярко выраженной индуктивностью, ведь именно для этого её и создавали. Однако подобным свойством обладают в принципе все элементы. Например, конденсатор, резистор, кабель, просто кусок провода и даже тело человек также имеют некоторую индуктивность. В расчетах ВЧ схем это обязательно принимается во внимание.

Важно! Проводя измерение индуктивности специализированным прибором, стоит помнить, что нельзя держаться руками за оба его вывода. В противном случае показания могут измениться и будут неверными. Вызвано это включением в измеряемую цепь тела человека с его собственной индуктивностью.

Накопленная энергия в индуктивности

Как известно магнитное поле обладает энергией. Аналогично тому, как в полностью заряженном конденсаторе существует запас электрической энергии, в индуктивной катушке, по обмотке которой течет ток, тоже существует запас — только уже магнитной энергии.

Энергия, запасенная в катушке индуктивности равна затраченной энергии необходимой для обеспечения протекания тока I в противодействии ЭДС. Величина запасенной энергии в индуктивности можно рассчитать по следующей формуле:

katushka-induktivnosti-opisanie-1

где L — индуктивность, I — ток, протекающий через катушку индуктивности.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента  – резистора, который, как говорят, обладает активным сопротивлением. Еще иногда его называют омическим.  Как нам говорит вики-словарь, “активный  – это деятельный, энергичный, проявляющий инициативу”. Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

Активное и реактивное сопротивление

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Что зовется индуктивным сопротивлением

Когда на катушку подают переменное напряжение, ток, проходящий по ней, меняется согласно поданному напряжению. Это служит причиной изменения магнитного поля, создающего электродвижущую силу, препятствующую происходящему.

Схема для измерения

В такой цепи имеется зависимость электрических параметров от двух видов: обычного и индуктивного. Они обозначаются, соответственно, как R и XL.

На обычном происходит выделение мощности. Однако на реактивных элементах она является нулевой. Это связано с постоянным изменением направления переменного тока.

В течение одного периода колебаний энергия дважды закачивается в катушку и столько же раз возвращается в источник.

Определение индуктивности

Активное сопротивление проводов и кабелей

Из электротехники известно, что полное сопротивление при равных условиях переменному и постоянному току будут отличаться. Касается это также проводов и кабелей. Это вызвано тем, что переменный ток распределяется по сечению неравномерно (поверхностный эффект). Однако для проводов из цветных металлов и с частотой переменного напряжения 50 Гц этот эффект не оказывает слишком большого влияния и им можно пренебречь. Таким образом, при расчете проводников из цветных металлов, их сопротивления переменному и постоянному току принимаются равными.

На практике активное сопротивление медных и алюминиевых проводников рассчитывают по формуле:

aktivnoe-soprotivlenie-provodov-i-kabelej

Где: l – длина в км, γ – удельная проводимость материала провода м/ом∙мм2, r0 – активное сопротивление 1 км провода на фазу Ом/км, s – площадь поперечного сечения, мм2.

Величина r0, как правило, берется из таблиц справочников.

На активное сопротивление провода влияет и температура окружающей среды. Величину r0 при температуре Θ можно определить по формуле:

aktivnoe-soprotivlenie-provodov-i-kabelej-pri-razlichnyx-znacheniyax-okruzhayushhej-sredy

Где: α – температурный коэффициент сопротивления; r20 – активное сопротивление при температуре 20 0С, γ20 – удельная проводимость при температуре в 20 0С.

Стальные провода обладают значительно большими активными сопротивлениями, чем аналогичные провода из цветных металлов. Его увеличение обусловлено значительно меньшей величиной удельной проводимости и поверхностным эффектом, который у стальных проводов выражен гораздо более ярко, чем у алюминиевых или медных. Более того, в стальных проводах присутствуют потери активной энергии на вихревые токи и перемагничивание, что в схемах замещения линий учитывают дополнительной составляющей активного сопротивления.

Активное сопротивление стальных проводов (в отличии от проводов из цветных металлов) сильно зависит от величины протекаемого тока, поэтому использовать постоянное значение удельной проводимости при расчетах нельзя.

Активное сопротивление стальных проводов в зависимости от протекающего тока аналитически выразить весьма трудно, поэтому для его определения используют специальные таблицы.

От каких факторов зависит сопротивление

Изменение силы тока создает электромагнитное поле переменной интенсивности. Результатом его воздействия на проводник является противодействие происходящему изменению тока.

Это противодействие называется реактивным сопротивлением. Существуют две его разновидности: индуктивная и емкостная. Первая создается при наличии в схеме индуктивного элемента, вторая — конденсатора.

В ситуации, когда в цепи присутствует катушка, ее реакция усиливается по мере увеличения частоты.

Цепь, в которой возникает индукция

В случае, когда ее индуктивность уменьшается, то противодействующая сила также становится меньше. При увеличении она возрастает.

Индуктивное сопротивление существенно связано с тем, какую форму принимает проводник. Оно имеется также и у отдельного провода, лежащего прямо. Однако если рядом будет еще один, то он будет оказывать воздействие дополнительно, что повлияет на рассматриваемую величину.

Рассматриваемую характеристику отдельного провода можно определять в зависимости от его толщины, но оно никак не связано с его сечением.

Принцип действия электродвижущей силы

Включение катушки индуктивности в цепи с постоянным и переменным током

В целом, мы определили, что такое катушка индуктивности, для чего она нужна, и какие характеристики для расчета ее параметров важны, однако до сих пор неискушенному читателю наверняка не понятно, как будут изменяться параметры протекающего через эту деталь тока.

Цепь, питаемая постоянным током

Катушка индуктивности в цепи постоянного тока

Катушка индуктивности в цепи постоянного тока

Чтобы упростить изложение, будем проводить очень простой опыт:

  • Для начала нам потребуется блок питания, способный выдавать стабильные 12 Вольт напряжения на выходе, 12-ти вольтовая лампочка накаливания для создания сопротивления, а также сама катушка индуктивности.
Стержень из феррита

Стержень из феррита

  • Катушку мы соберем своими руками из куска лакированной медной проволоки и ферритового стержня.
Изготовление катушки индуктивности

Изготовление катушки индуктивности

  • Инструкция предельно проста — берем проволоку и наматываем ее на стержень, после чего зачищаем ножом концы, чтобы можно было подсоединить клеммы от блока питания и подпаять провода.
  • Цена такой схемы минимальна, так что можете без проблем повторить опыт при желании дома.
Измерение индуктивности собранной катушки

Измерение индуктивности собранной катушки

  • При помощи LC-метра измеряем индуктивность полученной детали. Как видно из фото выше, в рассматриваемом примере она составила 132 мкГн.
Схема с включенной катушкой индуктивности

Схема с включенной катушкой индуктивности

  • Теперь берем все наши детали и соединяем их по приведенной выше схеме.
Схема включена в сеть

Схема включена в сеть

  • Вот что получилось на практике. Как видим, постоянный ток протекает через катушку практически беспрепятственно, если не учитывать естественное сопротивление проводника, ведь ток не меняет своего направления на противоположное.
На данной схеме лампочку заменяет резистор, но это не важно

На данной схеме лампочку заменяет резистор, но это не важно

  • Значит ли это, что катушка индуктивности неприменима в цепях с постоянным током? Вовсе нет! Вот другая схема, в которую, как мы видим, уже включен некий выключатель, способный размыкать цепь. Именно в момент замыкания и происходит самое интересное.
  • Поскольку до этого ток был равен нулю, он начнет изменяться и расти, из-за чего изменится магнитное поле катушки, что в свою очередь приведет к возникновению ЭДС. В катушке появится индукционный ток, который потечет в обратном направлении основного потока от источника питания.
  • Именно в момент включения величина ЭДС будет максимальной, так как скорость изменения тока в этот момент наиболее высока, а значит, ток катушки индуктивности равен нулю.
  • Что произойдет дальше? А дальше мы увидим, что ток в катушке индуктивности начнет расти, тогда как ЭДС, наоборот, снижаться. Вот как это выглядит на графике.
Uвх – входное напряжение питания; Il- изменение величины тока; Ul – напряжение на катушке

Uвх – входное напряжение питания; Il- изменение величины тока; Ul – напряжение на катушке

  • На верхнем графике изображено изменение напряжения входной сети, сразу после включения. Как видим, моментально появляется постоянное значение.
  • Дальше показано, как меняется величина тока, протекающего через катушку. Он тоже достигает постоянно значения, но не сразу, а спустя какое-то время.
  • Напряжение на катушке (нижний график) также вырастает моментально, но тут же начинает падать. При этом обратите внимание, что графики силы тока и напряжения зеркально противоположны.
  • Если все это перенести на наш опыт с лампой, то мы увидим, что после соединения цепи через выключатель, она загорится не сразу, а с некоторой задержкой.

Похожая ситуация будет и при размыкании цепи.

Физические процессы в катушке при размыкании цепи

Физические процессы в катушке при размыкании цепи

По графикам видна противоположная ситуация, означающая, что лампочка продолжить гореть еще какое-то время после размыкания цепи.

Дело в том, что при прекращении подачи питания, в катушке снова возникнет ЭДС, однако ток индукции потечет теперь в том же направлении, что и от источника питания, то есть запасенная энергия в катушке, поддержит питание цепи.

Включение в цепь с переменным током

Теперь давайте проведем другой опыт, в котором подключим сделанную ранее катушку к источнику питания переменного тока.

Схема включения катушки индуктивности в цепь переменного тока

Схема включения катушки индуктивности в цепь переменного тока

  • Для создания приведенной схемы и снятия показаний нам потребуются: генератор частоты, осциллограф, резистор на 100 Ом и сама катушка.
Схема в сборе

Схема в сборе

  • На фото выше виден осциллограф, отображающий 2 синусоиды. Это каналы, соответствующие частотам генератора (красная) и резистора (желтая), который включен в цепь уже после катушки индуктивности.
  • Опыт с постоянным током показал, что катушка индуктивности при неизменном токе, никак не изменяет параметры тока, то есть не оказывает ему никакого сопротивления, а изменения случаются лишь во время включения и выключения питания.
  • Теперь же, при помощи генератора, мы сможем посмотреть, как изменится сопротивление катушки, вследствие увеличения частот.
Ток имеет частоту 1 кГц

Ток имеет частоту 1 кГц

  • Для начала подадим ток частотой в 1 кГц. Как видно из показаний, сигнал на выходе ничем не отличается от входного – сохранились и частота, и амплитуда.
Частота в 100 кГц

Частота в 100 кГц

  • Наращиваем частоту, останавливаясь на 100 кГц-ах. По графикам видно, что произошло какое-то изменение. А именно, уменьшилась амплитуда (ток стал выравниваться) и желтый график сместился вправо (появилась задержка) – это явление называет сдвигом фаз, то есть разницей между начальными и итоговыми замерами величин.

Интересно знать! Чтобы иметь возможность измерить сдвиг фаз, необходимо чтобы сигналы имели одинаковую частоту. Амплитуда значения не имеет.

Сдвиг фаз

Сдвиг фаз

Давайте посмотрим, что произойдет, если частоту увеличить еще.

Частота в 500 кГц

Частота в 500 кГц

  • По графикам видно, что тенденция сохранилась. Фаза сдвинулась еще сильнее, а амплитуда упала до 480 милливольт, хотя изначально равнялась практически 2 Вольтам.
Частота в 2 Мегагерца

Частота в 2 Мегагерца

  • Выставляем максимальную частоту, что способен выдать наш генератор, и видим падение амплитуды до 120 мВ, и смещение фазы практически на 90 градусов.
  • Отсюда можно сделать вывод, что с увеличением частоты питающего тока сопротивление катушки индуктивности будет расти. При этом происходит сдвиг фаз, максимальное значение которого составляет 90 градусов.

Сопротивление катушки напрямую зависит от ее индуктивности и рассчитывается по следующей формуле.

Расчет сопротивления катушки индуктивности

Расчет сопротивления катушки индуктивности

Работает при этом катушка все по тому же принципу.

Изменение тока и ЭДС самоиндукции

Изменение тока и ЭДС самоиндукции

На графике показана зависимость тока и ЭДС от времени. Почему она выглядит именно так?

  • Мы уже выяснили на примере постоянного тока, что ЭДС прямопропорциональна скорости, с которой изменяется сила тока. Собственно на графике и показывается эта зависимость.
  • Рассмотрим часть графика. Между точками 1 и 2 ток изменяется, причем вначале изменение весьма резкое, но чем ближе к точке 2, тем оно сильнее замедляется, а в некотором промежутке времени и вовсе остается почти одинаковым.
  • Отсюда следует, что скорость изменения тока выше около точки 1, а значит, в тот момент времени ЭДС и будет самым высоким.
  • Также мы помним, что направление ЭДС противоположно основному току, то есть принимает отрицательное значение. Вот собственно и показанная зависимость – ток от точки 1 до точки 2 растет, а ЭДС падает, при прямой зависимости от скорости изменения тока.
  • Идем дальше – промежуток 2-3. Ток у нас падает – сначала с медленной, а затем быстрой скоростью. ЭДС же, наоборот, растет, принимая положительное значение. И так далее, по аналогии.

Теперь, что касается знаков. На участке 1-2, у тока и ЭДС они противоположные, а значит, ЭДС тормозит ток, препятствуя его возрастанию, из-за того что они направлены навстречу друг другу. Далее идет участок 2-3, на котором ток и ЭДС выравниваются по знакам, а значит ЭДС побежит в ту же сторону, поддерживая убывающий ток.

Вот мы и пришли к тому факту, что току, протекающему в цепи, катушка индуктивности оказывает индуктивное или реактивное сопротивление. Возвращаясь к формуле расчета этого сопротивления, видим, что, так как частота в постоянном токе равно 0, сопротивление не оказывается, и наоборот, высокая частота переменного тока, увеличивает сопротивление катушки.

Так, мы что-то забыли! Да, конечно же! Что будет в это время с напряжением?

Зависимость напряжения и тока от времени

Зависимость напряжения и тока от времени

Из графика видно, что ток относительно напряжения сдвинут по фазе на ¼ такта, или на 90 градусов (отстает), что является одним из важнейших свойств цепей переменного тока, с включенной катушкой индуктивности.

Как все это можно задействовать на практике. Самый банальный пример – это фильтр низких частот (ФНЧ). Мы увидели, что сигнал с высокой частотой проходит намного хуже, тогда как низкочастотный, не испытывает никакого сопротивления. Если включить катушку индуктивности  в цепь, запитывающую динамик, то мы получим обрезку высоких частот, превращая конструкцию в сабвуфер, играющий только басы.

На этом все. Мы разобрали, как меняется ток катушки индуктивности, ЭДС и напряжение. Кто бы мог подумать, что это простое устройство совершает такую работу? Этим то и прекрасен мир электротехники. Изучайте его, и вам откроется много интересного! В дополнение просмотрите лекцию из видео в этой статье. Удачи!

Расчёт индуктивного сопротивления катушки

Любая индуктивность, в т.ч. катушка, оказывает переменному току некоторое сопротивление. Как его рассчитать, было описано выше. Из формулы XL=2pfL видно, что сопротивление дросселя в первую очередь зависит от частоты протекающего по нему тока и его индуктивности. При этом с обоими параметрами связь прямо пропорциональная.

Частота – это характеристика внешней среды, индуктивность катушки зависит от ряда её геометрических свойств:

L=u0urN2S/l,

где:

  • u0 – магнитная проницаемость вакуума – 4p*10-7 Гн/м;
  • ur – относительная проницаемость сердечника;
  • N – количество витков дросселя;
  • S – его поперечное сечение в м2;
  • l – длина катушки в метрах.

Располагая вышеописанными формулами и информацией о материале и размерах катушки, можно достаточно точно прикинуть её индуктивное сопротивление без каких-либо измерительных приборов.

Дополнительная информация. Некоторые цифровые мультиметры имеют режим замера индуктивности. Подобная функция встречается редко, однако иногда оказывается очень полезной. Поэтому при выборе прибора стоит обратить внимание на то, способен ли он измерять индуктивность.

Катушка индуктивности

Он представляет собой изолированный провод, многократно намотанный вокруг сердечника.

Обычно каркас имеет цилиндрическую или тороидальную форму.

Индуктивность рассматривается в качестве основной характеристики катушки. Это качество выражает способность элемента осуществлять преобразование переменного тока в магнитное поле.

Важно! Магнитные свойства существуют даже у одиночного провода, при условии, что изменяется проходящий через него ток. Воздействие поля направлено так, чтобы противодействовать его изменению. Если он будет увеличиться, поле будет его тормозить, а если ослабевать — усиливать.

Катушки индуктивности

Определение направления силовых линий подчиняется «правилу большого пальца»: если у сжатой в кулак руки большой палец указывает в направлении изменения силы тока, то сомкнутые пальцы подсказывают направление силовых линий поля.

Таким образом в том случае, если провод многократно намотан на цилиндрическое основание, то силовые линии от разных витков складываются и проходят через ось.

Для того, чтобы многократно увеличить индуктивность, в центр цилиндра помещают сердечник из ферромагнитного материала.

Мощность реальной катушки

график мощности в реальной катушки

Мгновенная мощность катушки

p = ui = Umsin(ωt+φ) * Imsinωt

Из графика мгновенной мощности (рис. 13.11) видно, что в течение периода мощность четыре раза меняет знак; следовательно, направление потока энергии и в данном случае в течение периода меняется. Относительно некоторой оси t’, сдвинутой параллельно оси t на величину Р, график мгновенно мощности является синусоидальной функцией двойной частоты.
При положительном значении мощности энергия переходит от источника в приемник, а при отрицательном — наоборот. Нетрудно заметить, что количество энергии, поступившей в приемник (положительная площадь), больше возвращенной обратно (отрицательная площадь).

Следовательно, в цепи с активным сопротивлением и индуктивностью часть энергии, поступающей от генератора, необратимо превращается в другой вид энергии, но некоторая часть возвращается обратно. Этот процесс повторяется в каждый период тока, поэтому в цепи наряду с непрерывным превращением электрической энергии в другой вид энергии (активная энергия) часть ее совершает колебания между источником и приемником (реактивная энергия).

Скорость необратимого процесса преобразования энергии оценивается средней мощностью за период, или активной мощностью Р, скорость обменного процесса характеризуется реактивной мощностью Q.

Согласно выводам полученных в этих предыдущих  (первая, вторая) статьях — в активном сопротивлении P = URI   Q = 0;  а в индуктивном Р = 0; Q = ULI. 

Активная мощность всей цепи равна активной мощности в сопротивлении R, а реактивная — реактивной мощности в индуктивном сопротивлении XL. Подставляя значения UR = Ucosφ и UL = Usinφ, определяемые из треугольника напряжений по формулам (13.18), получим:

                   P = UIcosφ                                (13.19)

                    Q = UIsinφ                                (13.20)

Кроме активной и реактивной мощностей пользуются понятием полной мощности S, которая определяется произведением действующих величин напряжения и тока цепи;

                   S = UI = I2Z                                (13.21)

Величину полной мощности можно получить из выражения (13.22), которое легко доказать на основании формул (13.19) и (13.20):

формула                        (13.22)                         

Мощности S, Р, Q графически можно выразить сторонами прямоугольного треугольника (см. рис. 13.10, в). Треугольник мощностей получается из треугольника напряжений, если стороны последнего, выраженные в единицах напряжения, умножить на ток. Из треугольника мощностей можно определить

cosφ = P/S;       sinφ = Q/S;     tgφ = Q/P.             (13.23)

Полная мощность имеет ту же размерность, что Р и Q, но для различия единицу полной мощности называют вольт-ампер (В · А).

Активная мощность Р меньше или равна полной мощности цепи.
Отношение активной мощности цепи к ее полной мощности P/S =
= cosφ называют коэффициентом мощности.

Назначение приемников электрической энергии — преобразование
ее в другие виды энергии. Поэтому колебания энергии в цепи не только
бесполезны, но и вредны, так как при этом в приемнике не совершается
полного преобразования электрической энергии в работу или тепло,
а в соединительных проводах она теряется.

Индуктивное сопротивление

Пусть участок цепи имеет только индуктивность (рис.3). Будем считать $I>0$, если ток направлен от $а$ к $в$.

Рисунок 3.

Если в катушке течет ток, то в индуктивности появляется ЭДС самоиндукции, следовательно, закон Ома примет вид:

По условию $R=0. \mathcal E$ самоиндукции можно выразить как:

Из выражений (8), (9) следует, что:

Амплитуда напряжения в данном случае равна:

где $X_L-\ $индуктивное сопротивление (кажущееся сопротивление индуктивности).

Схемы соединения катушек индуктивностей

Параллельное соединение индуктивностей

параллельное соединение катушек индуктивности

Напряжение на каждой из катушек индуктивностей, соединенных параллельно, одинаково. Эквивалентную (общую) индуктивность параллельно соединенных катушек можно определить по формуле:

формула расчета параллельных индуктивностей

Последовательное соединение индуктивностей

последовательное соединение катушек индуктивностей

Ток, протекающий через катушки индуктивности соединенных последовательно, одинаков, но напряжение на каждой катушке индуктивности отличается. Сумма разностей потенциалов (напряжений) равна общему напряжению. Общая индуктивность последовательно соединенных катушек можно высчитать по формуле:

расчет последовательного соединения индуктивностей

Эти уравнения справедливы при условии, что магнитное поле каждой из катушек не оказывает влияние на соседние катушки.

Заключение

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Более подробно об индуктивности рассказано в статье Что такое катушка индуктивности. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.jasic.ua

www.tkexp.ru

www.elektrica.info

www.electricalschool.info

www.tehnar.net.ua

www.tehinfor.ru

Предыдущая

ТеорияЧто такое электромагнитная индукция?

Следующая

ТеорияЧто такое анод и катод, в чем их практическое применение

Добротность катушки индуктивности

На практике катушка индуктивности имеет последовательное сопротивление, созданное медной обмоткой самой катушки. Это последовательное сопротивление преобразует протекающий через катушку электрический ток  в тепло, что приводит к потере качества индукции, то есть добротности. Добротность является отношением индуктивности к сопротивлению.

Добротность катушки индуктивности может быть найдена через следующую формулу:

Добротность катушки индуктивности

 где R является собственным сопротивлением обмотки.

Реактивное сопротивление катушки индуктивности

Из опыта выше мы можем сделать вывод, что сопротивление катушки зависит от частоты и вычисляется по формуле

реактивное сопротивление катушки

где

ХL –  реактивное сопротивление катушки, Ом

П – постоянная и приблизительно равна 3,14

F – частота, Гц

L – индуктивность, Генри

Мощность в цепи с реактивными радиоэлементами

Для дальнейшего объяснения этого явления нам потребуется наша осциллограмма с катушки индуктивности:

Активное и реактивное сопротивление

Итак, давайте выделим на ней один период и разделим его на 4 части, то есть по 90 градусов каждая или π/2.

Активное и реактивное сопротивление

Давайте начнем с такого понятия, как мощность. Если не забыли, мощность – это сила тока помноженное на напряжение, то есть P=IU. Итак, в первую четвертинку периода t1 у нас напряжение принимает положительные значения и сила тока тоже положительное. Плюс на плюс дает плюс. В эту четверть периода энергия поступает из источника в реактивное сопротивление.

Теперь давайте рассмотрим отрезок времени t2. Здесь ток со знаком “плюс”, а напряжение со знаком “минус”. В итоге плюс на минус дает минус. Получается мощность со знаком “минус”. А разве так бывает? Еще как бывает! В этот промежуток времени реактивный радиоэлемент отдает запасенную энергию обратно в источник напряжения. Для лучшего понимания давайте рассмотрим простой житейский пример.

Представим себе кузнеца за работой:

Активное и реактивное сопротивление

Не знаю, какое было у вас детство, но я когда был пацаном, брал свинец с аккумуляторов и плющил его в металлические пластинки. И что думаете? Свинец нагревался. Не так, чтобы прям обжигал, а был тепленький на ощупь. То есть моя энергия удара превращалась в тепло, можно даже сказать, в полезную энергию.

А что если взять пружину от стоек ВАЗа и ударять по ней?

Активное и реактивное сопротивление

С пружиной не станет НИ-ЧЕ-ГО! Она ведь не свинец. Но… заметьте вот такую вещь: как только мы начинаем “плющить” пружину кувалдой, у нас она начинает сжиматься. И вот она сжалась до упора и… выстрелила вверх, подхватив с собой тяжелую кувалду, которая только что пыталась ее расплющить. То есть в данном случае энергия вернулась обратно в источник энергии, то есть обратно  к кузнецу. Он вроде как и пытался расплющить пружину, но пружина вернула энергию обратно своим разжатием. То есть кузнецу не надо уже было подымать тяжелый молот, так как за него это уже сделала пружина.

Разжатие пружины и возврат ею энергии обратно – это и есть отрицательная мощность. В этом случае энергия возвращается обратно в источник. Хорошо ли это или плохо – это уже другая история.

В третий промежуток времени  t3 и ток и напряжение у нас со знаком “минус”. Минус на минус – это плюс. То есть реактивный элемент снова поглощает энергию, ну а на t4, снова ее отдает, так как плюс на минус дает минус.

Активное и реактивное сопротивление

В результате за весь период у нас суммарное потребление энергии равно чему?

Активное и реактивное сопротивление

Правильно, нулю!

Так что же это получается тогда? На катушке и конденсаторе не будет выделяться никакой энергии? Получается так. Поэтому в схемах они чаще всего холодные, хотя могут быть и слегка теплыми, так как реальные параметры катушки и конденсатора выглядят совсем по другому.

Эквивалентная схема реальной катушки индуктивности выглядит вот так:

Активное и реактивное сопротивление

где

RL  – это сопротивление потерь. Это могут быть потери в проводах, так как любой провод обладает сопротивлением. Это могут быть потери в диэлектрике, потери в сердечнике и потери на вихревые токи.  Как видите, раз есть сопротивление, значит на нем может выделяться мощность, то есть тепло.

L – собственно сама индуктивность катушки

С – межвитковая емкость.

А вот и эквивалентная схема реального конденсатора:

Активное и реактивное сопротивление

где

r – сопротивление диэлектрика и корпуса между обкладками

С – собственно сама емкость конденсатора

ESR – эквивалентное последовательное сопротивление

ESI (ESL) – эквивалентная последовательная индуктивность

Здесь мы тоже видим такие параметры, как r  и ESR, которые на высоких частотах будут еще лучше себя проявлять, благодаря скин-эффекту. Ну и, соответственно, на них будет выделяться мощность, что приведет к небольшому малозаметному нагреву.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...
Электрик в Дом