Полевой транзистор

Детали пробника

Детали пробника ПТ

   PA1 — микроамперметр типа М4200 с током 300 мкА, со шкалой на 15 В, возможно использовать другие, от его габаритов завесит размер корпуса, при подборе R3, R4 при настройке, R1, R2 — СП4-1, СПО-1 сопротивлением от 4,7 кОм до 47 кОм, R3, R4 — МЛТ-0,25, С2-23 и другие. Переключатели SA1 — 3П12НПМ, 12П3Н ,ПГ2, ПГ3, П2К, SB1 — П2К. Тумблеры SA2 — SA4 — МТ-1, П1Т-1-1 и другие.

   Трансформатор ТР1 в преобразователе выполнен в ферритовом броневом магнитопроводе внешним диаметром 30 и высотой 18 мм. Обмотка I содержит 17 витков провода ПЭЛ 1,0, обмотка II — 2х40 витков провода ПЭЛ 0,23. Возможно использовать другой сердечник с соответствующим перерасчетом.

   Транзисторы VT1 — КТ315, КТ3102, VT2, VT3 — КТ801А, КТ801Б, VT4 — КТ805Б и другие, диоды VD1, VD2 — КД522, КД521, VD4-VD7 — КД105, КД208, КД209 или диодный мост КЦ407, микросхема DD1 — К555ЛН1, К155ЛН1.

   В качестве XS3 используется кроватка для микросхем установленная на печатной плате и распаянная под тип ПТ (расположение выводов) для того чтобы не загибать выводы ПТ или другой разъем распаянный соответствующим образом. Монтаж объемный. На дно (задняя крышка) установлена плата преобразователя.

Что это такое

Полевой транзистор — это радиоэлемент полупроводникового типа. Он используется для усиления электросигнала. В любом цифровом приборе схема с полевым транзистором исполняет роль ключа, который управляет переключением логических элементов прибора. В этом случае использование ПТ является очень выгодным решением проблемы с точки зрения уменьшения размеров устройства и платы. Обусловлено это тем, что цепь управления радиокомпонентами требует не очень большой мощности, а значит, что на одном кристалле могут располагаться тысячи и десятки тысяч транзисторов.

Схема подключения электротранзистора полевого типа

Материалами, из которых делают полупроводниковые элементы и транзисторы в том числе, являются:

  • Фосфид индия;
  • Нитрид галлия;
  • Арсенид галлия;
  • Карбид кремния.

График области насыщения электротранзистора

Важно! Полевые транзисторы также называют униполярными, так как при протекания через них электротока используется только один вид носителей.

Почему транзистор – полевой?

Полевые транзисторыСлово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.

Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.

Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.

В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.

Канал полевого транзистора может быть открыт только напряжением, без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.

Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.

МДП-транзистор со встроенным каналом.

Канал может иметь проводимость как p-типа, так и n-типа. Для определенности обратимся к транзистору с каналом p -типа. Дадим схематическое изображение структуры транзистора (рис. 1.97), условное графическое обозначение транзистора с каналом p-типа (рис. 1.98, а) и с каналом n-типа (рис. 1.98, б). Стрелка, как обычно, указывает направление от слоя p к слою n.

рис. 1.98

Рассматриваемый транзистор (см. рис. 1.97) может работать в двух режимах: обеднения и обогащения.

Режиму обеднения соответствует положительное напряжение uзи. При увеличении этого напряжения концентрация дырок в канале уменьшается (так как потенциал затвора больше потенциала истока), что приводит к уменьшению тока стока.

Если напряжение uзи больше напряжения отсечки, т. е. если u зи>uзиотс, то канал не существует и ток между истоком и стоком равен нулю. 

Режиму обогащения соответствует отрицательное напряжение uзи. При этом, чем больше модуль указанного напряжения, тем больше проводимость канала и тем больше ток стока.

Приведем схему включения транзистора (рис. 1.99). рис. 1.99

На ток стока влияет не только напряжение uзи, но и напряжение между подложкой и истоком uпи. Однако управление по затвору всегда предпочтительнее, так как при этом входные токи намного меньше. Кроме того, наличие напряжения на подложке уменьшает крутизну.

Подложка образует с истоком, стоком и каналом p-n-переход. При использовании транзистора необходимо следить за тем, чтобы напряжение на этом переходе не смещало его в прямом направлении. На практике подложку подключают к истоку (как показано на схеме) или к точке схемы, имеющей потенциал, больший потенциала истока (потенциал стока в приведенной выше схеме меньше потенциала истока).

Изобразим выходные характеристики МДП-транзистора (встроенный p-канал) типа КП201Л (рис. 1.100) и его стокозатворную характеристику (рис. 1.101). рис. 1.100 рис. 1.101

Видео «Подробно о полевых транзисторах»

Теги

LTspiceSPICEАктивный режимВыходные характеристики транзистораКрутизнаМоделированиеОбучениеПолевой транзисторРежим насыщенияРежим отсечкиТриодная областьЭлектроника

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации комментария требуется время на премодерацию.

Виды полевых транзисторов

Полевой транзистор с n-р переходами подразделяется на несколько классов в зависимости:

  1. От типа каналов проводников: n или р. Каналы воздействую на знаки, полярности, сигналы управления. Они должны быть противоположны по знакам n-участку.
  2. От структуры приборов: диффузных, сплавных по р -n — переходам, с затворами Шоттки, тонкопленочными.
  3. От общего числа контактов: могут быть трех или четырех контактными. Для четырех контактных приборов, подложки также являются затворами.
  4. От используемых материалов: германия, кремния, арсенид галлия.

Комплект устройств

В свою очередь разделение классов происходит в зависимости от принципа работы транзистора:

  • устройства под управлениями р-n переходов;
  • устройства с изолированными затворами или с барьерами Шоттки.

Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.

ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения Uси. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.

Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.

outputChar.png

Как открыть полевой транзистор

Для того чтобы полностью открыть полевой транзистор и запустить его работы в режиме ключа, напряжение базы-эмиттера должно быть больше 0,6-0,7 Вольт. Также сила электротока, текущая через базу должна быть такой, чтобы он мог спокойно протекать через коллектор-эмиттер без каких-либо препятствий. В идеальном случае, сопротивление через коллектор-эмиттер должно быть равным нулю, в реальности же оно будет иметь сотые доли Ома. Такой режим называется «режимом насыщения транзистора».

Режим насыщения элемента через транзистор

Как видно на схеме, коллектор и эмиттер находятся в режиме насыщения и соединены накоротко, что позволяет лампочке гореть «на полную».

Заключение

Более подробную информацию об устройстве полевых транзисторов можно узнать в статье Лекция о полевых транзисторах. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.bourabai.ru

www.studme.org

www.radiolubitel.net

www.radioprog.ru

www.eandc.ru

Предыдущая

ПолупроводникиЧто такое NTC термисторы

Следующая

ПолупроводникиЧто такое SMD светодиоды

Схема (структура)

На схеме ниже можно увидеть примерное строение транзистора полярного типа. Его выводы соединены с металлизированными участками затвора, истока и стока. Схема изображает именно p канальное устройство, затвором которого является n-слой. Он имеет гораздо меньшее удельное сопротивление, чем канальная область p-слоя. Область же перехода n-p в большей степени находится в p-слое.

Схематическое изображение электротранзистора с n-p каналами

Преимущества и недостатки полевых транзисторов перед биполярными.

Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)

Главные преимущества полевых транзисторов

  • Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
  • Усиление по току у полевых транзисторов намного выше, чем у биполярных.
  • Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
  • У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.

Главные недостатки полевых транзисторов

  • У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
  • Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
  • Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».
  • При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).

    parasitBJT.png

    Однако, при быстром скачке напряжения между стоком и истоком полевого транзистора, паразитный транзистор может случайно открыться, в результате чего, вся схема может выйти из строя.

  • Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.

    Поэтому внешние корпуса полевых транзисторов стараются создавать таким образом, чтоб минимизировать возможность возникновения нежелательного напряжения между электродами прибора. Одним из таких методов является закорачивание истока с подложкой и их заземление. Также в некоторых моделях используют специально встроенный диод между стоком и истоком. При работе с интегральными схемами (чипами), состоящими преимущественно из полевых транзисторов, желательно использовать заземленные антистатические браслеты. При транспортировке интегральных схем используют вакуумные антистатические упаковки

Видео «Устройство и принцип работы полевого транзистора»

Меры безопасности при работе с полевыми транзисторами

Все полевые транзисторы, будь это полевой транзистор с управляющим PN-переходом, либо МОП-транзистор, очень чувствительны к электрическим перегрузкам на Затворе. Особенно это касается электростатического заряда, который накапливается на теле человека и на измерительных приборах. Опасные значения электростатического заряда для МОП-транзисторов составляют 50-100 Вольт, а для транзисторов с управляющим PN переходом – 250 Вольт. Поэтому, самое важное правило при работе с такими транзисторами – это заземлить себя через антистатический браслет, или взяться за голую батарею ДО касания полевых транзисторов.

Также в некоторых экземплярах полевых транзисторов встраивают защитные стабилитроны между Истоком и Затвором, которые вроде бы спасают от электростатики, но лучше все-таки перестраховаться лишний раз и не испытывать судьбу транзистор на прочность. Также не помешало бы заземлить всю паяльную и измерительную аппаратуру. В настоящее время это все делается уже автоматически через евро розетки, у которых имеются в наличии заземляющий проводник.

Похожие статьи по теме “полевой транзистор”

Транзистор биполярный

Полевой транзистор с управляющим PN-переходом (JFET-транзистор)

Транзисторметр Mega328

Читаем электрические схемы с транзистором

Мультивибратор на транзисторах

Сторожевое устройство на одном транзисторе

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...
Электрик в Дом