Добротность и энергия катушки индуктивности. Варианты соединения.

Активное сопротивление проводов и кабелей

Из электротехники известно, что полное сопротивление при равных условиях переменному и постоянному току будут отличаться. Касается это также проводов и кабелей. Это вызвано тем, что переменный ток распределяется по сечению неравномерно (поверхностный эффект). Однако для проводов из цветных металлов и с частотой переменного напряжения 50 Гц этот эффект не оказывает слишком большого влияния и им можно пренебречь. Таким образом, при расчете проводников из цветных металлов, их сопротивления переменному и постоянному току принимаются равными.

На практике активное сопротивление медных и алюминиевых проводников рассчитывают по формуле:

aktivnoe-soprotivlenie-provodov-i-kabelej

Где: l – длина в км, γ – удельная проводимость материала провода м/ом∙мм2, r0 – активное сопротивление 1 км провода на фазу Ом/км, s – площадь поперечного сечения, мм2.

Величина r0, как правило, берется из таблиц справочников.

На активное сопротивление провода влияет и температура окружающей среды. Величину r0 при температуре Θ можно определить по формуле:

aktivnoe-soprotivlenie-provodov-i-kabelej-pri-razlichnyx-znacheniyax-okruzhayushhej-sredy

Где: α – температурный коэффициент сопротивления; r20 – активное сопротивление при температуре 20 0С, γ20 – удельная проводимость при температуре в 20 0С.

Стальные провода обладают значительно большими активными сопротивлениями, чем аналогичные провода из цветных металлов. Его увеличение обусловлено значительно меньшей величиной удельной проводимости и поверхностным эффектом, который у стальных проводов выражен гораздо более ярко, чем у алюминиевых или медных. Более того, в стальных проводах присутствуют потери активной энергии на вихревые токи и перемагничивание, что в схемах замещения линий учитывают дополнительной составляющей активного сопротивления.

Активное сопротивление стальных проводов (в отличии от проводов из цветных металлов) сильно зависит от величины протекаемого тока, поэтому использовать постоянное значение удельной проводимости при расчетах нельзя.

Активное сопротивление стальных проводов в зависимости от протекающего тока аналитически выразить весьма трудно, поэтому для его определения используют специальные таблицы.

Периодическая (колебательная) разрядка конденсатора

Основы > Теоретические основы электротехники

Периодическая (колебательная) разрядка конденсатора

Разрядка будет периодической или колебательной, если сопротивление контура меньше критического:

, т. е. корни характеристического уравнения ( 14.34) комплексные и сопряженные.
Обозначим в ( 14.35)

так что

где

– угловая частота и – период собственных или свободных колебаний контура.
Для корней
получим

Решение дифференциального уравнения ( 14.32) при комплексных корнях его характеристического уравнения удобно записать в виде


(но можно и в виде суммы двух экспонент с комплексными показателями).
Ток

Так как переходные напряжение и ток попрежнему равны их свободным значениям и начальные условия такие же, как и в двух предыдущих случаях, то по формулам (14.52) и (14.53) получим

Из последних соотношений находим



Подставив значения в (14.52) и (14.53) и обозначив для краткости

получим окончательные выражения:

Кривые изменения

и i даны на рис. 14.19. Ток и напряжения представляются затухающими синусоидальными функциями с угловой частотой собственных колебаний контура и коэффициентом затуханияa, причем как , так и a определяются только параметрами контура r, L и С. Начальная фаза y зависит также только от параметров контура, в то время как зависят и от параметров контура, и от начального напряжения на конденсаторе.
Быстроту затухания рассматриваемых колебаний характеризуют отношением напряжений в моменты времени
t и:

Это отношение, называемое

декрементом колебания, – постоянная величина, не зависящая от времени t, а зависящая лишь от параметров rLC-контура.
Часто быстроту затухания колебаний характеризуют натуральным логарифмом этого отношения

который называется

логарифмическим декрементом колебания. Если кривая затухает медленно, то отношение ее значений, отстоящих на время друг от друга, близко к единице, логарифмический декремент близок к нулю. На рис. 14.20 представлены кривые изменения отношения амплитуд колебаний в конце 1, 2, 3-го и т. д. периодов к начальной амплитуде, построенные для разных значений логарифмического декремента .

Рис. 14.19

Рис. 14.20

Плоский конденсатор

Существует множество типов конденсаторов различной формы и внутреннего устройства. Рассмотрим самый простой и принципиальный — плоский конденсатор. Плоский конденсатор состоит из двух параллельных пластин проводника (обкладок), электрически изолированных друг от друга воздухом, или специальным диэлектрическим материалом (например бумага, стекло или слюда).

устройтво плоского конденсатора и обозначение на схеме

Понятие реактивного сопротивления

Данная разновидность репрезентирует взаимоотношение электротока и напряжения на определенных типах подключенных в сеть нагрузок (дросселях, конденсаторных компонентах), не сопряженное с объемами электроэнергии, используемыми потребителем. Измерительной единицей, как и для других разновидностей, выступает ом. Рассматриваемое явление обнаруживает себя только при переменном электротоке. В расчетах оно обозначается латинской литерой Х.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента  – резистора, который, как говорят, обладает активным сопротивлением. Еще иногда его называют омическим.  Как нам говорит вики-словарь, “активный  – это деятельный, энергичный, проявляющий инициативу”. Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

Активное и реактивное сопротивление

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Энергия катушки индуктивности.

Электрический ток, протекающий через катушку способствует накоплению энергии в магнитном поле катушки. При пропадании/отключении тока эта энергия будет возвращена в электрическую цепь. С этим мы и столкнулись при рассмотрении катушек индуктивности в цепях постоянного тока. Больше тут добавить особо нечего, просто приведу формулу, по которой можно определить величину накопленной энергии катушки индуктивности:

W = \frac{LI^2}{2}

Давайте переходить к вариантам соединения катушек между собой… Все расчеты мы будем производить для идеальных катушек индуктивности, то есть их активные сопротивления равны 0. К слову, в большинстве теоретических задач и примеров, рассматриваются именно идеальные катушки. Но не стоит забывать о том, что в реальных цепях активное сопротивление не равно 0 и его необходимо учитывать при проведении любых расчетов.

Примеры использования бота

Определим время заряда конденсатора ёмкостью 1микроФарад, до 5 Вольт, если сопротивление цепи 1 килоОм.

Напряжение внешнего источника питания 12 Вольт, а на обкладках конденсатора напряжение, в момент подключения источника питания, составляло 1 Вольт.

Что бы сразу хотелось бы заметить. Как видно из задачи у нас  есть остаточное напряжение на конденсаторе в размере 1 Вольт, которое надо учитывать в расчетах времени заряда.

Данные, которые мы будем вводить следующие:

U0=12-1 =11В

Ut=5-1=4В 

R=1кОм

С=1мкФ

пишем запрос fiz U0=11В;Ut=4В;R=1кОм;C=1мкФ;key=zaryad

и получаем ответ

U0 = 11 Вольт

Ut = 4 Вольт

R = 1 килоОм

C = 1 микрофарад

T = 1 милисекунда

tt = 0.4519851237 милисекунда

То есть решение = 451.98 мкс

Теперь давайте проверим наши расчеты. Если бы конденсатор был бы в момент подключения источника питания полностью разряжен

То при условии зарядки его до 1 Вольта наш запрос был бы таким

fiz U0=12В;Ut=1В;R=1кОм;C=1мкФ;key=zaryad

и время заряда было бы tt = 87.011377 микросекунда

а при зарядки до 5 Вольт был бы таким

fiz U0=12В;Ut=5В;R=1кОм;C=1мкФ;key=zaryad

и время заряда было бы tt = 538.9965007 микросекунда

То время заряда конденсатора  с 1В до 5 Вольт составило бы 538.9965007 микросекунда минус  87.011377 микросекунда = 451.98 мкс

Что несомненно говорит о правильности наших расчетов по изначальным условиям.

Заряд и разряд конденсатора через сопротивление

|

2014-06-23 10:12:35

|

Варламов Дмитрий

|

favicon.ico

Электротехника онлайн

|

favicon.ico

Расчет параметров заряда и разряда конденсатора через сопротивление онлайн. Определение всех необходимых параметров

|

заряд, конденсатор, разряд, время, онлайн

Для чего она нужна и где используется

Подобные элементы находят множество применений, но наиболее часто они используются в качестве:

  • Элементов индуктивности в слаботочных электрических цепях;
  • Реакторов в силовой электронике, в качестве элементов компенсации реактивного характера нагрузки;
  • Дросселей для сглаживания пульсаций выпрямленного или переменного тока;
  • Электромагнитов в качестве источников магнитного поля в электромагнитных реле или органах управления различных устройств;
  • Индукторов в установках индукционного нагрева;
  • Накопителя энергии в источниках преобразования напряжения;
  • Датчиков магнитных полей (магнитные головки в накопителях на жестких магнитных дисках);
  • Линий задержки сигнала;
  • Антенн для приема и передачи электромагнитных волн.

Индуктивная антенна

Виды и свойства реактивного сопротивления

Данная величина может иметь две формы:

  • емкостную – присущую конденсаторным элементам;
  • индуктивную – характерную для катушек, соленоидов и обмоток.

Важно! Если к трансформатору подключить активную нагрузку, реактивное сопротивление понизится, так как упадет значение того типа мощности, который его вызывает. В некоторых цепях с несколькими индуктивными или емкостными нагрузками имеет место взаимоуничтожение фазовых сдвигов, приходящихся на разные детали, тогда комплексная величина будет равной нулю.

Треугольник сопротивлений

Треугольник сопротивлений

Заряд конденсатора. Напряжение

В самом начале переходного периода зарядки, напряжение между обкладками конденсатора равняется нулю. Как только на обкладках начинают появляться заряженные частицы, между разноименными зарядами возникает напряжение. Причиной этому является диэлектрик между пластинами, который «мешает» стремящимся друг к другу зарядам с противоположным знаком перейти на другую сторону конденсатора.

На начальном этапе зарядки, напряжение быстро растет, потому что большой ток очень быстро увеличивает количество заряженных частиц на обкладках. Чем больше заряжается конденсатор, тем меньше ток, и тeм медленнее растет напряжение. В конце переходного периода, напряжение на конденсаторе полностью прекратит рост, и будет равняться напряжению на источнике питания.

напряжение и ток конденсатора

Как видно на графике, сила тока конденсатора напрямую зависит от изменения напряжения.

Формула для нахождения тока конденсатора во время переходного периода:

формула тока конденсатора во время переходного периода

  • Ic — ток конденсатора
  • C — Емкость конденсатора
  • ΔVc/Δt – Изменение напряжения на конденсаторе за отрезок времени

Осциллограмма силы тока на активном сопротивлении

В данном опыте нам не обязательно знать номинал силы тока в цепи. Мы будем просто смотреть, от чего зависит сила тока и изменяется ли вообще?

Поэтому,  наша схема примет вот такой вид:

как измерить форму силы тока в цепи

В этом случае шунтом будет являться резистор сопротивлением в 0,5 Ом. Почему именно 0,5 Ом? Да потому что он не будет сильно греться, так как обладает маленьким сопротивлением, а также  его номинал вполне достаточен, чтобы снять с него напряжение.

Осталось снять напряжение с генератора, а также со шунта с помощью осциллографа. Если вы не забыли, со шунта мы снимаем осциллограмму силы тока в цепи. Красная осциллограмма – это напряжение с генератора Uген , а желтая осциллограмма  – это напряжение с шунта Uш , в нашем случае  – сила тока.  Смотрим, что у нас получилось:

Частота 28 Герц:

осциллограмма активного сопротивления

Частота 285 Герц:

Активное и реактивное сопротивление

Частота 30 Килогерц:

Активное и реактивное сопротивление

Как вы видите, с ростом частоты сила тока у нас осталась такой же.

Давайте побалуемся формой сигнала:

Активное и реактивное сопротивление

Активное и реактивное сопротивление

Как мы видим, сила тока  полностью повторяет форму сигнала напряжения.

Итак, какие можно сделать выводы?

1) Сила тока через активное (омическое) сопротивление имеет такую же форму, как и форма напряжения.

2) Сила тока и напряжение на активном сопротивлении совпадают по фазе, то есть куда напряжение, туда и ток. Они двигаются синфазно, то есть одновременно.

3) С ростом частоты ничего не меняется (если только на очень высоких частотах).

Принцип действия индуктивного сопротивления линий

Именно индуктивность признана главной характеристикой для катушек наряду с аналогичным показателем для их обмоток. R реактивного вида, проявляющееся под действием самоиндукционной ЭДС, растет в прямой пропорции с частотой тока.aktivnoe-i-induktivnoe-soprotivleni2

Реактивная и активная составляющие обуславливают полное сопротивление, которое можно представить в виде суммы квадратов каждого показателя.

Оперативно справиться с поставленной задачей по расчету номинальных показателей помогут специальные таблицы. В них для самых распространенных проводников приведены все главные характеристики. Но на практике часто требуется узнать Х для участка с конкретной протяженностью. В этом случае главным инструментом является уже приводившееся выражение 

Виды пассивных элементов

Данные устройства характеризуются тем, что вместо рассеивания энергии склонны к ее накоплению. Разные типы таких деталей создают различные формы сопротивления.

Катушка индуктивности

Это радиокомпонент, представляющий собой проводниковый элемент спиральной или винтообразной формы, покрытый изоляцией. В схемах катушки используют для нивелирования помех и искажений, снижения величины переменного тока, генерации магнитного поля. Длинные тонкие элементы носят название соленоидов. Катушки отличаются небольшими величинами активной сопротивляемости и емкости, но обладают индуктивностью, генерируя электродвижущую силу.

Подключение катушки в электрическую цепь

Подключение катушки в электрическую цепь

Емкостной элемент

Примером этого вида деталей является конденсатор. Он включает в себя две проводящие обкладки, между которыми находится диэлектрический материал. Протекание электротока обусловлено накоплением и отдачей обкладками своего заряда.

Подсоединение конденсатора в электроцепь

Подсоединение конденсатора в электроцепь

Импеданс элемента

Общее сопротивление конденсатора (импеданс) переменному сигналу складывается из трёх составляющих: ёмкостного, резистивного и индуктивного сопротивления. Все эти величины при конструировании схем, содержащих накопительный элемент, необходимо учитывать. В ином случае в электрической цепи, при соответствующей обвязке, конденсатор может вести себя как дроссель и находится в резонансе.

Формула расчёта сопротивления конденсатора

Из всех трёх величин наиболее значимой является ёмкостное сопротивление конденсатора, но при определённых обстоятельствах индуктивное тоже оказывает влияние. Часто при расчётах паразитные значения вроде индуктивности или активного сопротивления принимаются ничтожно малыми, а конденсатор в этом случае называется идеальным.

Полное сопротивление элемента выражается в формуле Z = (R2 + (Xl-Xc) 2 ) ½, где

  • Xl — индуктивность;
  • Xс — ёмкость;
  • R — активная составляющая.

Последняя возникает из-за появления электродвижущей силы (ЭДС) самоиндукции. Непостоянство тока приводит к изменению магнитного потока, поддерживающего ток ЭДС самоиндукции постоянным. Это значение определяется индуктивностью L и частотой протекающих зарядов W. Xl = wL = 2*p*f*L. Xc — ёмкостное сопротивление, зависящее от ёмкости накопителя C и частоты тока f. Xc = 1/wC = ½*p*f*C, где w — круговая частота.

Материал в тему: все о переменном конденсаторе.

Разница между ёмкостным и индуктивным значениями называется реактивным сопротивлением конденсатора: X = Xl-Xc. По формулам можно увидеть, что при увеличении частоты f сигнала начинает преобладать индуктивное значение, при уменьшении — ёмкостное. Поэтому если:

  • X > 0, в элементе проявляются индуктивные свойства;
  • X = 0, в ёмкости присутствует только активная величина;
  • X < 0, в элементе проявляется ёмкостное сопротивление.

Активное сопротивление R связывается с потерями мощности, превращением её электрической энергии в тепловую. Реактивное – с обменом энергии между переменным током и электромагнитным полем. Таким образом, полное сопротивление можно найти, используя формулу Z = R +j*X, где j — мнимая единица.

Импеданс элемента

Импеданс элемента.

Компенсация реактивной мощности

С помощью электрических сетей осуществляется передача электроэнергии на значительные расстояния. В большинстве случаев она используется для питания электродвигателей, имеющих высокое индуктивное сопротивление и большое количество резистивных элементов. К потребителям поступает полная мощность, которая делится на активную и реактивную. В первом случае с помощью активной мощности совершается полезная работа, а во втором – происходит нагрев трансформаторных обмоток и электродвигателей.

Активное и реактивное сопротивление

Под действием реактивной составляющей, возникающей на индуктивных сопротивлениях, существенно понижается качество электроэнергии. Противостоять ее вредному воздействию помогает комплекс мероприятий по компенсации с использованием конденсаторных батарей. За счет емкостного сопротивления удается понизить косинус угла φ.

Компенсирующие устройства применяются на подстанциях, от которых электричество поступает к проблемным потребителям. Этот способ дает положительные результаты не только в промышленности, но и на бытовых объектах, снижая нагрузку на оборудование.

RC-фильтры верхних частот

Фильтры верхних частот пропускают только высокочастотные составляющие сигналов и ослабляют низкочастотные составляющие. Фильтры верхних частот используются, например, в разделительных фильтрах звуковых частот (кроссоверах) для подавления низкочастотных составляющих в сигналах, подаваемых на высокочастотные динамики («пищалки»), которые не могут воспроизводить такие сигналы и к тому же обладают малой мощностью по сравнению с мощностью низкочастотных сигналов.

Активный фильтр верхних частот с операционным усилителем

Активный фильтр верхних частот с операционным усилителем

Фильтры верхних частот часто используются для блокировки постоянной составляющей сигналов в тех случаях, когда она нежелательна. Например, в профессиональных микрофонах очень часто используется «фантомное» питание постоянным напряжением, которое подается по микрофонному кабелю. В то же время микрофон записывает переменные сигналы, такие как человеческий голос или музыка. Постоянное напряжение не должно появляться на выходе микрофона и не должно поступать на вход микрофонного усилителя, поэтому для его блокировки используется фильтр верхних частот.

Простой полосовой фильтр, собранный из двух каскадов — фильтра нижних частот (C2, R2) и фильтра высоких частот (C1, R1)

Простой полосовой фильтр, собранный из двух каскадов — фильтра нижних частот (C2, R2) и фильтра высоких частот (C1, R1)

Если фильтр нижних частот и фильтр верхних частот стоят друг за другом, они образуют полосовой фильтр, который пропускает частоты только в определенной полосе частот и не пропускает частоты за пределами этой полосы. Такие фильтры широко используются в радиоприемниках и радиопередатчиках. В приемниках полосовые фильтры используются только для селективного пропускания и усиления сигналов радиостанции в требуемой узкой полосе частот. При этом сигналы других радиостанций за пределами этой полосы подавляются. Передатчики могут передавать радиосигналы только в определенном разрешенном для них диапазоне частот. Поэтому в них используются полосовые фильтры для ограничения полосы передаваемого сигнала таким образом, что он вписывался в допустимые пределы.

Катушка индуктивности в цепи переменного тока

В отличие от предыдущего случая, при подключении катушечного элемента идущий по нему электроток будет отставать от напряжения. Однако величина фазового сдвига будет аналогичной – 90°. При этом за препятствование быстрому увеличению тока ответственна ЭДС. Элемент способен играть роль безваттного резистора.

Заключение

В данной статье были рассмотрены основные вопросы расчета сопротивления конденсаторов.  Больше информации можно найти в скачиваемой версии учебника по электромеханике “Что такое конденсаторы”

В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.amperof.ru

www.eduspb.com

www.beasthackerz.ru

www.electroandi.ru

www.websor.ru

Предыдущая

КонденсаторыСколько стоят керамические конденсаторы?

Следующая

КонденсаторыЧто такое ионистор?

Почему не сгорает первичная обмотка трансформатора

Иногда при эксплуатации трансформаторов возникает вопрос, почему не происходит сгорание обмотки, если ее сопротивляемость оказывается малой. Обмоточный компонент по своему устройству может быть приравнен к катушке. Соответственно, искомый показатель может быть вычислен с помощью выражения:

X = 2*π*L*F, где L – частота, F – индуктивность.

Поскольку последняя у трансформатора оказывается достаточно большой, таковым будет и итоговое число.

Номинальное напряжение

Второй по значимости характеристикой после емкости является максимальное номинальное напряжение конденсатора. Данный параметр обозначает максимальное напряжение, которое может выдержать конденсатор. Превышение этого значения приводит к «пробиванию» изолятора между пластинами и короткому замыканию. Номинальное напряжение зависит от материала изолятора и его толщины (расстояния между обкладками).

Следует отметить, что при работе с переменным напряжением нужно учитывать именно пиковое значение (наибольшее мгновенное значение напряжения за период). Например, если эффективное напряжение источника питания будет 50В, то его пиковое значение будет свыше 70В. Соответственно необходимо использовать конденсатор с номинальным напряжением более 70В. Однако на практике, рекомендуется использовать конденсатор с номинальным напряжением не менее в два раза превышающим максимально возможное напряжение, которое будет к нему приложено.

Ток утечки

Также при работе конденсатора учитывается такой параметр как ток утечки. Поскольку в реальной жизни диэлектрик между пластинами все же пропускает маленький ток, это приводит к потере со временем начального заряда конденсатора.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...
Электрик в Дом