Частотный Преобразователь Схема Электрическая Принципиальная

Содержание

Что такое частотник

Частотником в обиходе называют ПЧН (преобразователь частоты и напряжения). Это устройство, позволяющее не только регулировать частоту переменного тока и напряжения, но и создавать целый спектр защитных опций для присоединяемой нагрузки.

Важно! Изменение частоты на выходе ПЧ относительно частоты на входе происходит по обусловленному порядку V/f или с применением векторного регулирования.

Конструкция частотного преобразователя

Основными элементами частотного преобразователя являются силовая часть (преобразователь электрической энергии) и управляющее устройство (контроллер). Современные частотные преобразователи обычно имеют модульную архитектуру, что позволяет расширять возможности устройства. Также зачастую имеется возможность установки дополнительных интерфейсных модулей и модулей расширения каналов ввода/вывода.

Функциональная схема частотного преобразователя Обозначения блоков на функциональной схеме ЧП

Функциональная схема частотного преобразователя

Назначение и достоинства

Электромагнитные силы, образующиеся под влиянием магнитного поля, создаваемого якорной обмоткой, приводят ротор в движение. Его вращение происходит с числом оборотов, которое задается частотой сетевого тока. При частоте в 50 Гц происходит 50 колебаний в течение 1 с. Следовательно, скорость вращения ротора составит 3000 об./мин.

Назначение частотных преобразователей состоит в том, чтобы посредством изменения параметров частоты тока обеспечить эффективное управление двигателем.

Достоинствами этих приспособлений являются:

  • обеспечение плавности работы мотора в момент пуска и торможения;
  • регулирование работой двигателей, собранных в группу;
  • отсутствие необходимости применения редукторов и иных механических устройств для управления скоростью движка;
  • обеспечение работы систем управления приводами на многофункциональной основе;
  • возможность корректировок в настойках без прерывания работы агрегата.

Что такое частотник?

Под этим термином подразумевается частотный преобразователь для двигателя, то есть сложное техническое устройство, которое обладает возможностью преобразовывать входной переменный ток 50 Гц, меняя на выходе частоту. Если брать характеристики современных преобразователей, то параметры их работы могут колебаться в диапазоне от 1 до 800 Гц.

Многие могут спросить, для чего нужно такое преобразование частоты. Все просто — для плавного запуска и изменения оборотов любого электродвигателя. Как раз по этой причине и появляется разница в скорости вращения барабана современных стиральных машин.

Все преобразователи можно разделить на три основных типа – это однофазный аппарат, трехфазный и высоковольтный. Схема частотника любого из этих типов схожа, за исключением небольших нюансов.

Принцип работы высокочастотного преобразователя заключается в создании экономичного режима, при помощи которого появляется возможность управлять такими характеристиками, как привод, скорость и крутящий момент агрегата, согласовываясь с заданными параметрами и характером циклов.

Вместе с выполняемой основной работой, на жидкокристаллический экран, которым снабжен современный частотный преобразователь для асинхронного двигателя, выводится информация о параметрах; выходное значение частот, скоростей, мощностей, а так же крутящих моментов. Так же на нем отображается и информация о продолжительности функционирования.

Схема, отображающая принцип частотного преобразователя

Схема, отображающая принцип частотного преобразователя

Преобразователь частоты для асинхронных двигателей по назначению, которое может быть:

  • Промышленным, с мощностями, не превышающими 315 кВт, с тремя фазами;
  • Частотники векторного управления, с мощностями, не превышающими 500 кВт, так же с тремя фазами;
  • С управлением аппаратами насосно-вентиляторного типа, с нагрузкой до 315 кВт;
  • Для работы с кранами и другими механизмами подъемного типа;
  • Применяемые во взрывоопасных областях;
  • Частотные преобразователи, монтируемые непосредственно на двигатели.

Устройство и принцип действия частотного преобразователя

rabotaet_chastotnyy_preobrazovatel.jpgЧастотный преобразователь — электронное устройство для изменения частоты тока. Оно широко применяется для работы асинхронных электрических двигателей. Использование этого прибора позволяет продлить срок службы механизмов и увеличить экономию электроэнергии.

Достигается это тем, что преобразователь частоты (ПЧ) обеспечивает плавный пуск рабочего режима электрооборудования и его остановку.

Методы управления

На микроконтроллере частотного преобразователя выполняется программное обеспечение, которое управляет основными параметрами электродвигателя (скоростью и моментом). Основные методы управления бесщеточными двигателями, используемые в частотных преобразователях представлены в таблице ниже.

Характеристики основных способов управления электродвигателями используемых в частотных преобразователях

[3]

Примечание:

  1. Без обратной связи.
  2. С обратной связью.
  3. В установившемся режиме

Цели внедрения преобразователей частоты

Стабилизация технологического процесса

Автоматическое регулирование скорости вращения приводных механизмов (вентиляторов, насосов, конвейеров и др.) позволяет лучше стабилизировать технологический процесс:

  • Привод быстрее и точнее отрабатывает задание и возмущения
  • Кривую переходного процесса можно настроить под конкретную задачу.

Энергосбережение

При регулировании технологических параметров (расхода, давления, температуры) традиционным способом (задвижкой, клапаном, шибером) энергопотребление электродвигателя (насоса или вентилятора) изменяется незначительно. Преобразователь частоты регулирует технологические параметры, изменяя скорость вращения двигателя, при этом энергопотребление снижается существенно. Для турбомеханизмов с вентиляторной нагрузкой мощность находится в кубической зависимости от скорости вращения двигателя. Другими словами, если, например, для поддержания требуемого давления насос вращается со скоростью, равной половине номинальной, то энергии он будет потреблять на 87,5% меньше, чем в номинальном режиме.

Замена двигателей постоянного тока

Раньше приводы постоянного тока применялись достаточно широко, сейчас их с успехом заменяют приводами переменного тока, которые работают со стандартными асинхронными двигателями с короткозамкнутым ротором:

  • Снижаются эксплуатационные расходы, которые в большей степени связаны с обслуживанием коллектора
  • Улучшаются энергетические показатели
  • Стандартные асинхронные двигатели дешевле и доступнее, чем двигатели постоянного тока.

Замена двигателей c фазным ротором

Регулирование скорости двигателя с фазным ротором осуществляется путём изменения реостатного сопротивления в цепи ротора. Такие электроприводы не имеют полноценного режима торможения и не предназначены для обеспечения длительного глубокого регулирования скорости, так как они обладают небольшой продолжительностью включения (порядка 10…30%) на малых скоростях и малым диапазоном регулирования скорости (обычно 1:3). При добавлении сопротивления в цепи ротора, механическая характеристика становится мягкой. КПД таких электроприводов порядка 50%. Данный способ регулирования скорости морально устарел и с успехом заменяется частотным регулированием.

Замена старых тиристорных приводов

Выходные силовые каскады современных преобразователей частоты реализованы на базе IGBT-транзисторов. Старые тиристорные приводы, как правило, ремонтируются «на коленке», специалистов по сервису и запчасти для них найти становится всё сложнее. Современные приводы существенно превосходят своих предшественников, как по экономическим, так и по массогабаритным показателям.

Замена высоковольтных двигателей на низковольтные

В СССР широко применялись двигатели на напряжение 6кВ и 10кВ. Замена старых высоковольтных двигателей на новые низковольтные двигатели с низковольтными преобразователями частоты часто экономически более оправдана, чем установка высоковольтных ПЧ:

  • Низковольтные ПЧ дешевле
  • Обслуживание низковольтной техники проще и дешевле
  • Современные низковольтные двигатели можно подобрать тех же установочных размеров, что и старые высоковольтные двигатели.

Повышение надёжности работы и увеличение срока службы основного технологического оборудования

  • При работе насосов и вентиляторов на пониженных скоростях увеличивается срок эксплуатации подшипников, замедляется износ оборудования из-за трения
  • Плавные пуски и остановы насосов предотвращают прорывы труб из-за гидроударов
  • Контроль токов и моментов исключает поломки агрегатов из-за механических напряжений, заклинивания и т.п.
  • Преобразователи частоты при правильной эксплуатации не требуют обслуживания в отличие, например, от механических задвижек с электроприводом
  • Автоматический пропуск резонансных частот исключает разрушение агрегата из-за механического резонанса
  • Подхват вращающегося двигателя в обоих направлениях при восстановлении питания.

Увеличение производительности

  • За счёт улучшения управляемости технологическим процессом и повышения точности регулирования
  • При определённых условиях двигатель можно разогнать выше номинальной скорости
  • Повышенные пусковые моменты и интенсивное торможение за счёт более эффективного рассеивания тепла в самом двигателе и на внешнем тормозном резисторе позволяют увеличить производительность автоматической линии.

Снижение простоя оборудования

Например, производительность центробежного сепаратора и крупность выделяемого им материала зависит от скорости воздушного потока, которая регулируется изменением угла наклона лопастей. Такая переналадка занимает много времени. Преобразователь частоты регулирует скорость в непрерывном режиме.

Снижение стоимости установленного оборудования

Встроенные в преобразователи частоты функции позволяют реализовать достаточно сложные задачи автоматического управления без использования дополнительного оборудования:

  • Работа на разных скоростях, реверс (не нужен контактор)
  • Полная защита двигателя (не нужно тепловое реле, реле контроля фаз)
  • Cos ф≈1 (не нужны компенсаторы реактивной мощности двигателей)
  • Защита насоса от сухого хода (без датчика сухого хода)
  • Защита от обрыва ремня вентиляторов (не нужны дополнительные датчики)
  • Логическая обработка входных дискретных сигналов
  • Встроенные ПИД-регуляторы процесса, скорости (не нужны внешние регуляторы)
  • Встроенный каскадный контроллер (для турбомеханизмов)
  • Встроенные часы реального времени.

Автоматизация

  • ПЧ может архивировать в своей памяти, отображать на своём дисплее и передавать для дальнейшей обработки по полевой шине все электрические параметры двигателя, информацию от датчиков, подключенных к ПЧ, рабочие и аварийные сообщения
  • Снижение человеческого фактора.

Для чего понадобился ПЧ

Ко мне обратился старый знакомый с обувного производства. Ему для предпродажной подготовки женских сапог требуется операция полировки, чтобы сапоги блестели.

Кстати, я уже делал у него пресс горячего тиснения, где установил регулятор температуры ФиФ. Теперь на сапогах можно получать красивые изображения.

Станок для полировки был в отвратительном состоянии, но его удалось привести в чувство, перебрав советские контакторы и подсоединив двигатели.

Тем не менее, для качественной обработки поверхности кожи было предпочтительно, чтобы линейная скорость полировки могла меняться. Кроме как ПЧ, другими способами это сделать невозможно. Замена шкивов не рассматривалась – скорость нужно менять оперативно и без инструментов.

В результате я установил преобразователь частоты Delta. Подключил и настроил его так, что можно менять обороты подключенного через него двигателя нажатием кнопок на панели управления. Дальше – подробности.

Методы модуляции

Широкое развитие силовых электрических преобразователей в последние десятилетия привело к увеличению количества исследований в области модуляции. Метод модуляции непосредственно влияет на эффективность всей энергосистемы (силовой части, системы управления), определяя экономическую выгоду и производительность конечного продукта.

Главная цель методов модуляции – добиться лучшей формы сигналов (напряжений и токов) с минимальными потерями. Другие второстепенные задачи управления могут быть решены посредством использования правильного способа модуляции, такие как уменьшение синфазной помехи, выравнивание постоянного напряжения, уменьшение пульсаций входного тока, снижение скорости нарастания напряжения. Одновременное достижение всех целей управления невозможно, необходим компромисс. Каждая схема силового преобразователя и каждое приложение должны быть глубоко изучены для определения наиболее подходящего метода модуляции.

  • Методы модуляции можно разделить на четыре основные группы:
  • ШИМ — широтно-импульсная модуляция
  • ПВМ — пространственно-векторная модуляция
  • гармоническая модуляция
  • методы переключения переменной частоты

Конструктивное исполнение

Существуют разные виды частотных преобразователей для двигателя. Но при этом конструктивно можно выделить отдельные типичные блоки. Данные компоненты тесно связаны между собой. Блок управления определяет работу выходного каскада.

При этом определяющую роль играет возможность изменения параметров тока переменного типа. Дополнительно в устройстве предусматриваются системы защиты, находящиеся под контролем микроконтроллера.

Выпрямитель представляет собой первый модуль. Через него происходит движение тока. Здесь происходит изменение переменного тока. При помощи диодов он преобразуется в постоянный. Можно подобрать модели для однофазной сети или для трехфазного питания. В них будет отличаться число диодов.

Постоянное напряжение с высокими пульсациями выходит из выпрямителя. Чтобы сгладить пульсации применяются конденсатор и индуктивная катушка. А вот процесс преобразования параметров выходящего тока происходит в инверторе.

Конструктивно в нем содержатся транзисторы. Их 6 штук – по паре для каждой фазы. А микропроцессорная система гарантирует управление скоростными показателями роторного вращения. Все это можно увидеть на фото частотного преобразователя.

Структура частотного преобразователя

Состав блоков, из которых состоят устройства, зависит от их класса. Преобразователи непосредственного включения состоят из блоков:

  • блок системы управления;
  • тиристорный блок (управляемый выпрямитель);
  • электродвигатель.

Структура ПЧ с узлом постоянного тока (ПТ) выглядит следующим образом:

  • звено ПТ;
  • импульсный инвертор трёх фаз;
  • управляющая система.

Нагрузкой тоже выступает электродвигатель, частота вращения которого подлежит регулировке.

Технические характеристики

Принцип работы частотного преобразователя для электродвигателяИспользовать частотные преобразователи следует только с учетом эксплуатационных характеристик. К основным техническим характеристикам, на которые нужно обратить внимание, можно отнести:

  1. Диапазон напряжения подаваемого тока. Существуют различные варианты исполнения, которые могут работать при напряжении от 100 до 120 В, от 200 до 240 В. Этот показатель является определяющим при выборе наиболее подходящей модели.
  2. Номинальная мощность подключаемого в цепи электродвигателя. Как правило, показатель измеряется в кВт.
  3. Полная мощность электродвигателя.
  4. Номинальный выходной ток.
  5. Выходное напряжение зачастую не больше показателя напряжения от источника питания, но может быть и меньше.
  6. Диапазон выходной частоты.
  7. Показатель допустимой силы тока на входе.
  8. Частота электричества при входе.
  9. Максимальные отклонения от показателей, которые допустимы при тех или иных случаях.

Подобные параметры должны быть указаны в спецификации преобразователя частот. Если, к примеру, не учесть напряжение подаваемого тока, рассматриваемое устройство будет испорчено.

Выпускаемые модели

Во многих областях применяются асинхронные двигатели, работа которых характеризуется высокими показателями устойчивости и безопасности. Это особенно важно, так как любое устройство обладает своими индивидуальными характеристиками, зачем и нужны инверторы, которые обеспечивают оптимизацию параметров их питания. К новой линейке оборудования относятся:

  1. princip_raboty_preobrazovatelya.jpgEmotron FDU 2.0 — преобразователь частоты последнего поколения, выпускаемый шведской компанией Emotron. Устройство работает в диапазоне от 0,75 до 1,6 кВт и рассчитано на разные группы напряжения: 3×380 B, 3×500 B, 3×690 B. В основном инвертор используется для насосного или вентиляционного оборудования.
  2. Emotron серии CDU/CDX — оборудование, предназначенное для контроля за работой лифта. Инверторы этой марки устанавливаются как на новые лифты, так и для модернизации старых конструкций. Монтируются в машинном отделении или непосредственно рядом с шахтой.
  3. «Лидер» — преобразователь частоты применяется для управления асинхронными двигателями в насосном, вентиляционном оборудовании, мельницах, дробилках, центрифугах и так далее. Устройство исключает присутствие динамических ударов во время запуска, что позволяет в 1,5—2 раза увеличить срок службы двигателя и приводного механизма.
  4. Easydrive серии Smart — инвертор, обладающий выходной мощностью от 1 Гц до 2 кГц. Отличается автоматическим определением параметров электродвигателя, когда механизм неподвижен. Устройство обладает семью программируемыми входами переключения, которые позволяют выполнять до 30 функций.

Все модели позволяют менять направление вращения вала электродвигателя, экономить основные энергетические ресурсы, снижать эксплуатационные затраты.

Фото частотных преобразователей


Классификация и виды

Все частотные преобразователи для электромоторов условно можно разделить на несколько групп:

  • Индивидуальные. Разработаны под какой-то определенный тип и характеристики мотора.
  • Универсальные. Благодаря возможности изменять параметры могут работать с различными двигателями.
  • Специализированные. Разрабатываются для конкретных типов оборудования. Например, преобразователи для насосных станций (насосов) и вентиляторов (Mitsubishi FR-F740).
  • Интеллектуальные. Имеют встроенный персональный компьютер, имеют функции самодиагностики. ПЧ сам следит за состоянием изнашиваемых частей и сообщает о необходимости из замены, когда ресурс подходит к концу.

Самые дешевые — индивидуальные. Но они могут работать только исключительно с моторами одного типа/мощности. Специализированные тоже имеют довольно ограниченный диапазон подключаемого оборудования. Универсальные, с этой точки зрения, хороши, но стоит они значительно дороже (сложнее схема и больше компонентов).

Выбирать надо под конкретное устройство

Выбирать надо под конкретное устройство

Но, все-таки, самые дорогие — интеллектуальные. Многие из них управляться могут при помощи сенсорной панели, а не набора регуляторов. Кроме того, большинство моделей имеет пульт дистанционного управления. Это удобно, так как частотный регулятор может быть установлен далеко. Обычно их ставят в шкафах или где-то на вводе. При наличии пульта ДУ можно регулировать работу, находясь возле двигателя и не бегая к шкафу.

Что получилось

В итоге панель управления приобрела такой вид:

Полировка в работе

Установленный преобразователь частоты в работе, панель управления

Наклейки на кнопки я сделал при помощи программы Splan и самоклейки по методике, описанной в статье Моя эволюция маркировки.

Как всё работает, будет понятнее, если я приведу электрическую схему.

Частотные преобразователи

Раздел Техническая информация → Частотные преобразователи

Частотные преобразователи предназначены для плавного регулирования скорости асинхронного двигателя за счет создания на выходе преобразователя трехфазного напряжения переменной частоты. В простейших случаях регулирование частоты и напряжения происходит в соответствии с заданной характеристикой V/f. в наиболее совершенных преобразователях реализовано так называемое векторное управление .
Принцип работы частотного преобразователя для электродвигателяПринцип работы частотного преобразователя или как его часто называют — инвертора: переменное напряжение промышленной сети выпрямляется блоком выпрямительных диодов и фильтруется батареей конденсаторов большой емкости для минимизации пульсаций полученного напряжения. Это напряжение подается на мостовую схему, включающую шесть управляемых IGBT или MOSFET транзисторов с диодами, включенными антипараллельно для защиты транзисторов от пробоя напряжением обратной полярности, возникающем при работе с обмотками двигателя. Кроме того, в схему иногда включают цепь «слива» энергии — транзистор с резистором большой мощности рассеивания. Эту схему используют в режиме торможения, чтобы гасить генерируемое напряжение двигателем и обезопасить конденсаторы от перезарядки и выхода из строя.
Блок-схема инвертора показана ниже.
Частотный преобразователь в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор. Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.

Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в изготовлении и эксплуатации.
Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток).
Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.
Регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.
Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.
Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением
Принцип работы частотного преобразователя для электродвигателя
неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.
Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.
Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики.
Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.
Закон изменения напряжения зависит от характера момента нагрузки Mс. При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:
Принцип работы частотного преобразователя для электродвигателя
Для вентиляторного характера момента нагрузки это состояние имеет вид:
Принцип работы частотного преобразователя для электродвигателя
При моменте нагрузки, обратно пропорциональном скорости:
Принцип работы частотного преобразователя для электродвигателя
Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статорной обмотке асинхронного двигателя.
Преимущества использования регулируемого электропривода в технологических процессах
Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.
Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора. При использовании частотных регуляторов обеспечивается плавная регулировка скорости вращения позволяет в большинстве случаев отказаться от использования редукторов, вариаторов, дросселей и другой регулирующей аппаратуры.
При подключении через частотный преобразователь пуск двигателя происходит плавно, без пусковых токов и ударов, что снижает нагрузку на двигатель и механизмы, тем самым увеличивает срок их службы.
Перспективность частотного регулирования наглядно видна из рисунка
Принцип работы частотного преобразователя для электродвигателя
Таким образом, при дросселировании поток вещества, сдерживаемый задвижкой или клапаном, не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.

Структура частотного преобразователя Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.
Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.
В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.

Принцип работы преобразователя частоты Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора. системы управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв. Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.

Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.
Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.
Принцип работы частотного преобразователя для электродвигателя
Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов (рис. 3).
Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодулирована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.
Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным (АР) за счет изменения входного напряжения Uв и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.
Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.
Принцип работы частотного преобразователя для электродвигателя
Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения.
Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов – запираемых GTO – тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 2.45 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.
Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно диодами обратного тока D1-D6.
За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 – реактивная составляющая тока.
Принцип работы частотного преобразователя для электродвигателя
И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;
Сф – конденсатор фильтра;

Вариант схемы подключения частотного преобразователя фирмы Omron.
Принцип работы частотного преобразователя для электродвигателя

Подключение частотных преобразователей с соблюдением требований ЭМС
Принцип работы частотного преобразователя для электродвигателя
Монтаж и подключение с соблюдением требований ЭМС подробно описаны в соответствующих руководствах на устройства.

Техническая информация преобразователи частоты . Optdrive английское качество.

Источники: http://electricalschool.info/elprivod/1658-chastotnyjj-preobrazovatel-vidy-princip.html, http://slarkenergy.ru/oborudovanie/engine/preobrazovatel-chastoty.html, http://www.110volt.ru/text/invertor

Подключение к электродвигателю

Для обеспечения безопасной работы, перед частотным преобразователем желательно ставить автомат защиты. Причем на трехфазную сеть нужен трехфазный автомат, а не три отдельных однофазных. Это позволит быстро отключить сразу все фазы как при перегрузке проводки, так и при перекосе на одной из фаз. Номинал автоматов выбирают по току нагрузки.

Подключение нулевого и заземляющего проводников обязательно. Тянут их от соответствующих шин напрямую — при помощи провода требуемого сечения. Для защиты человека и контроля за состоянием изоляции, в схему желательно добавить еще УЗО (устройство защитного отключения). Его включают перед автоматом. При возникновении тока утечки, УЗО одновременно разорвет фазы и ноль, полностью обесточив схему.

Схема разрабатывается в зависимости от назначения устройства с которым работает электродвигатель

Схема разрабатывается в зависимости от назначения устройства с которым работает электродвигатель

При покупке дешевых моделей преобразователей, для пуска и останова может понадобиться установка специального реле, фиксирующего контакты в нужном положении. В этом случае с выхода автомата провода подаются на реле, а с его выхода идут на частотный преобразователь. Само подключение двигателей к ПЧ происходит напрямую.

Схема подключения частотного преобразователя для двух электродвигателей

Схема подключения частотного преобразователя для двух электродвигателей

Как известно, асинхронные двигатели могут работать как с однофазным, так и с трехфазным напряжением. Перед подключением движка к преобразователю частоты, надо проверить как подключены обмотки. Они должны быть:

  • «звездой» — если напряжение на выходе ПЧ трехфазное;
  • «треугольником» — если преобразователь выдает однофазное питание.
Частотный преобразователь для электродвигателя: подключение напрямую возможно не для всех двигателей

Частотный преобразователь для электродвигателя: подключение напрямую возможно не для всех двигателей

Частотный преобразователь для электродвигателя подключается при помощи кабелей (не проводов), сечение и параметры которых соответствуют параметрам устройства. Эти данные, как и рекомендации по подключению, должны быть в паспорте прибора. Так что внимательно проштудируйте мануал. Это может спасти от многих неприятностей. Все-таки могут быть особенности.

Видео

Дополнительная информация от коллег. Рекомендую посмотреть, увлекательно и познавательно!

Где используются частотные преобразователи

Подобной аппаратурой пользуются в промышленных масштабах: в устройствах, требующих регулировки скоростей вращения электромоторов и устранения негативного влияния амплитудных токов при пуске. К подобным устройствам относятся:

  • лифты;
  • насосы центробежные, центрифуги и вентиляторы;
  • транспортёры и поточные линии;
  • станки, требующие точного позиционирования.

Наличие обратной связи при управлении ПЧ обеспечивает корректную регулировку вращения привода.

Скачать

Как и обещал, выкладываю для скачивания материалы по теме.

• 4_82__2018_Elec VFD Samelectric.ru / Обзорная статья в журнале \»Электротехнический рынок\» от автора блога СамЭлектрик.ру про преобразователи частоты — устройство, назначение и примеры применения в промышленном оборудовании., pdf, 516.2 kB, скачан: 339 раз./

• Manual VFD-EL_UM_RU_2016 / Руководство по эксплуатации на частотник Дельта, о котором идет речь в статье, pdf, 8.41 MB, скачан: 307 раз./

• VFD Danfoss manual / Просто о сложном. Популярная книга про устройство и принципы работы преобразователей частоты и асинхронных двигателей., pdf, 2.36 MB, скачан: 489 раз./

• Соколовский. Учебник по ПЧ для вузов / Соколовский Г.Г. Электроприводы переменного тока с частотным регулированием. Учебник, zip, 2.26 MB, скачан: 377 раз./

• Сандлер, Сарбатов. Частотное управление. / Сандлер, Сарбатов. Частотное управление асинхронными двигателями, Библиотека по автоматике, 1966 г. Старая советская книжка, но очень хорошо расписана теория, zip, 1.53 MB, скачан: 368 раз./

• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений.Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга — отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 446 раз./

Ещё пособие по двигателям:
• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 217 раз./

А вот моя статья на Дзене – с чего начать изучение частотников?

На этом всё! Двигатель крутится, обувь полируется, а женщины радуют нас своими ножками в блестящих сапожках! Буду рад вопросам и обмену опытом в комментариях!

Понравилось? Поставьте оценку, и почитайте другие статьи блога!

Звёзд: 1Звёзд: 2Звёзд: 3Звёзд: 4Звёзд: 5

(

8

оценок, среднее:

4,38

из 5)

loading.gif

Загрузка…

Как выбрать частотник

Существует несколько критериев, по которым выбирают аппарат.

По мощности

Мощность преобразователя (P) должна быть немного больше, чем электрическая мощность двигателя, которым он будет управлять. Электрическая мощность, которую двигатель будет потреблять, равна произведению значений напряжения и тока (В*А). Частотник подбирают с 15-20% запасом мощности.

Шильдик на электродвигателе

Шильдик на электродвигателе

Напряжение в сети

От того, какое напряжение будет являться питающим (380 В или 220 В), зависит выбор регулятора. Величина Uпит указана в техпаспорте прибора.

Частотная регулировка

Интервал регулировки частот преобразователя, заявленный производителем, должен позволять регулировать вращение вала присоединяемого электромотора в спектре его скоростных характеристик.

Дискретные входы

Наличие входов обязательно. Они нужны для подачи (ввода) команд. С их помощью можно изменять параметры преобразователя и его состояние.

Дискретные входы

Дискретные входы

Соотношение цены и количества выводов

Подобрать частотник по цене можно, руководствуясь количеством функциональных выводов. От их количества зависит не только стоимость, но и удобство подключения, управления, настройки и регулировки.

Схема выводов инвертора Delta VFD-B

Схема выводов инвертора Delta VFD-B

Перегрузки и ШУ

Шина управления (ШУ) подбирается под конкретный инвертор. Хорошим вариантом при приобретении будет ШУ, которая имеет достаточный запас колодок (разъёмов) для подключения. Это позволит в дальнейшем подключать к аппарату дополнительную аппаратуру, устройства защиты от перегрузок. Учесть все необходимые качества поможет сборка частотного преобразователя своими руками.

Как сделать преобразователь частоты собственноручно

Многие любители пробуют изготавливать преобразователи частоты своими руками.

Схема самодельного инвертора

Схема самодельного инвертора

Схема хорошо работает с мотором мощностью до 1 кВт, российского и зарубежного производства.

Для изготовления инвертора понадобятся следующие детали:

  • микросхемы: К155ЛА3, К155ИЕ4, К155ЛП5;
  • транзисторы: КТ315 (3 шт.), КТ817В (3шт.);
  • диоды: КД105Г – 3 шт.;
  • резисторы сопротивлением: 10 кОм (3 шт.), 6,2 кОм (3 шт.), 1 кОм (3 шт.), 220 Ом и переменный резистор на 1 кОм;
  • конденсаторы: 0,33 и 0,1 мкФ;
  • электролитические конденсаторы: 100 мкФ*10 В и 1000 мкФ*50 В.

Этому частотнику, своими руками изготовленному, обязательно нужен блок питания на 27 В и 5 В постоянного напряжения. Электродвигатель подключают согласно схеме.

Включение электромотора в схему

Включение электромотора в схему

Если обращаться к современным технологиям, то создание инвертора можно выполнять на базе платформы Ардуино. Регуляторы частоты – незаменимая вещь для управления электроприводом, как в бытовых, так и в промышленных условиях.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...
Электрик в Дом